-
Notifications
You must be signed in to change notification settings - Fork 2.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Oxidize the ConsolidateBlocks pass (#13368)
* Oxidize the ConsolidateBlocks pass This commit ports the consolidate blocks pass to rust. The logic remains the same and this is just a straight porting. One optimization is that to remove the amount of python processing the Collect2qBlocks pass is no longer run as part of the preset pass managers and this is called directly in rust. This speeds up the pass because it avoids 3 crossing of the language boundary and also the intermediate creation of DAGNode python objects. The pass still supports running with Collect2qBlocks for backwards compatibility and will skip running the pass equivalent internally the field is present in the property set. There are potential improvements that can be investigated here such as avoiding in place dag contraction and moving to rebuilding the dag iteratively. Also changing the logic around estimated error (see #11659) to be more robust. But these can be left for follow up PRs as they change the logic. Realistically we should look at combining ConsolidateBlocks for it's current two usages with Split2qUnitaries and UnitarySynthesis into those passes for more efficiency. We can improve the performance and logic as part of that refactor. See #12007 for more details on this for UnitarySynthesis. Closes #12250 * Update test to count consolidate_blocks instead of collect_2q_blocks * Fix lint * Fix solovay kitaev test * Add release note * Restore 2q block collection for synthesis translation plugin * Add rust native substitute method * Fix final test failures * Remove release note and test change The test failure fixed by a test change was incorrect and masked a logic bug that was fixed in a subsequent commit. This commit reverts that change to the test and removes the release note attempting to document a fix for a bug that only existed during development of this PR. * Fix comment leftover from rust-analyzer * Remove unused code * Simplify control flow handling * Remove unnecessary clone from substitute_node * Preallocate block op names in replace_block_with_py_op * Remove more unused imports * Optimize linalg in block collection This commit reworks the logic to reduce the number of Kronecker products and 2q matrix multiplications we do as part of computing the unitary of the block. It now computes the 1q components individually with 1q matrix multiplications and only calls kron() and a 2q matmul when a 2q gate is encountered. This reduces the number of more expensive operations we need to perform and replaces them with a much faster 1q matmul. * Use static one qubit identity matrix * Remove unnecessary lifetime annotations * Add missing docstring to new rust method * Apply suggestions from code review Co-authored-by: Kevin Hartman <kevin@hart.mn> * Fix lint * Add comment for MAX_2Q_DEPTH constant * Reuse block_qargs for each block Co-authored-by: Henry Zou <87874865+henryzou50@users.noreply.github.com> --------- Co-authored-by: Kevin Hartman <kevin@hart.mn> Co-authored-by: Henry Zou <87874865+henryzou50@users.noreply.github.com>
- Loading branch information
1 parent
6ed7743
commit 1b35e8b
Showing
14 changed files
with
760 additions
and
458 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,319 @@ | ||
// This code is part of Qiskit. | ||
// | ||
// (C) Copyright IBM 2024 | ||
// | ||
// This code is licensed under the Apache License, Version 2.0. You may | ||
// obtain a copy of this license in the LICENSE.txt file in the root directory | ||
// of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. | ||
// | ||
// Any modifications or derivative works of this code must retain this | ||
// copyright notice, and modified files need to carry a notice indicating | ||
// that they have been altered from the originals. | ||
|
||
use hashbrown::{HashMap, HashSet}; | ||
use ndarray::{aview2, Array2}; | ||
use num_complex::Complex64; | ||
use numpy::{IntoPyArray, PyReadonlyArray2}; | ||
use pyo3::intern; | ||
use pyo3::prelude::*; | ||
use rustworkx_core::petgraph::stable_graph::NodeIndex; | ||
|
||
use qiskit_circuit::circuit_data::CircuitData; | ||
use qiskit_circuit::dag_circuit::DAGCircuit; | ||
use qiskit_circuit::gate_matrix::{ONE_QUBIT_IDENTITY, TWO_QUBIT_IDENTITY}; | ||
use qiskit_circuit::imports::{QI_OPERATOR, QUANTUM_CIRCUIT, UNITARY_GATE}; | ||
use qiskit_circuit::operations::{Operation, Param}; | ||
use qiskit_circuit::Qubit; | ||
|
||
use crate::convert_2q_block_matrix::{blocks_to_matrix, get_matrix_from_inst}; | ||
use crate::euler_one_qubit_decomposer::matmul_1q; | ||
use crate::nlayout::PhysicalQubit; | ||
use crate::target_transpiler::Target; | ||
use crate::two_qubit_decompose::TwoQubitBasisDecomposer; | ||
|
||
fn is_supported( | ||
target: Option<&Target>, | ||
basis_gates: Option<&HashSet<String>>, | ||
name: &str, | ||
qargs: &[Qubit], | ||
) -> bool { | ||
match target { | ||
Some(target) => { | ||
let physical_qargs = qargs.iter().map(|bit| PhysicalQubit(bit.0)).collect(); | ||
target.instruction_supported(name, Some(&physical_qargs)) | ||
} | ||
None => match basis_gates { | ||
Some(basis_gates) => basis_gates.contains(name), | ||
None => true, | ||
}, | ||
} | ||
} | ||
|
||
// If depth > 20, there will be 1q gates to consolidate. | ||
const MAX_2Q_DEPTH: usize = 20; | ||
|
||
#[allow(clippy::too_many_arguments)] | ||
#[pyfunction] | ||
#[pyo3(signature = (dag, decomposer, force_consolidate, target=None, basis_gates=None, blocks=None, runs=None))] | ||
pub(crate) fn consolidate_blocks( | ||
py: Python, | ||
dag: &mut DAGCircuit, | ||
decomposer: &TwoQubitBasisDecomposer, | ||
force_consolidate: bool, | ||
target: Option<&Target>, | ||
basis_gates: Option<HashSet<String>>, | ||
blocks: Option<Vec<Vec<usize>>>, | ||
runs: Option<Vec<Vec<usize>>>, | ||
) -> PyResult<()> { | ||
let blocks = match blocks { | ||
Some(runs) => runs | ||
.into_iter() | ||
.map(|run| { | ||
run.into_iter() | ||
.map(NodeIndex::new) | ||
.collect::<Vec<NodeIndex>>() | ||
}) | ||
.collect(), | ||
// If runs are specified but blocks are none we're in a legacy configuration where external | ||
// collection passes are being used. In this case don't collect blocks because it's | ||
// unexpected. | ||
None => match runs { | ||
Some(_) => vec![], | ||
None => dag.collect_2q_runs().unwrap(), | ||
}, | ||
}; | ||
|
||
let runs: Option<Vec<Vec<NodeIndex>>> = runs.map(|runs| { | ||
runs.into_iter() | ||
.map(|run| { | ||
run.into_iter() | ||
.map(NodeIndex::new) | ||
.collect::<Vec<NodeIndex>>() | ||
}) | ||
.collect() | ||
}); | ||
let mut all_block_gates: HashSet<NodeIndex> = | ||
HashSet::with_capacity(blocks.iter().map(|x| x.len()).sum()); | ||
let mut block_qargs: HashSet<Qubit> = HashSet::with_capacity(2); | ||
for block in blocks { | ||
block_qargs.clear(); | ||
if block.len() == 1 { | ||
let inst_node = block[0]; | ||
let inst = dag.dag()[inst_node].unwrap_operation(); | ||
if !is_supported( | ||
target, | ||
basis_gates.as_ref(), | ||
inst.op.name(), | ||
dag.get_qargs(inst.qubits), | ||
) { | ||
all_block_gates.insert(inst_node); | ||
let matrix = match get_matrix_from_inst(py, inst) { | ||
Ok(mat) => mat, | ||
Err(_) => continue, | ||
}; | ||
let array = matrix.into_pyarray_bound(py); | ||
let unitary_gate = UNITARY_GATE | ||
.get_bound(py) | ||
.call1((array, py.None(), false))?; | ||
dag.substitute_node_with_py_op(py, inst_node, &unitary_gate, false)?; | ||
continue; | ||
} | ||
} | ||
let mut basis_count: usize = 0; | ||
let mut outside_basis = false; | ||
for node in &block { | ||
let inst = dag.dag()[*node].unwrap_operation(); | ||
block_qargs.extend(dag.get_qargs(inst.qubits)); | ||
all_block_gates.insert(*node); | ||
if inst.op.name() == decomposer.gate_name() { | ||
basis_count += 1; | ||
} | ||
if !is_supported( | ||
target, | ||
basis_gates.as_ref(), | ||
inst.op.name(), | ||
dag.get_qargs(inst.qubits), | ||
) { | ||
outside_basis = true; | ||
} | ||
} | ||
if block_qargs.len() > 2 { | ||
let mut qargs: Vec<Qubit> = block_qargs.iter().copied().collect(); | ||
qargs.sort(); | ||
let block_index_map: HashMap<Qubit, usize> = qargs | ||
.into_iter() | ||
.enumerate() | ||
.map(|(idx, qubit)| (qubit, idx)) | ||
.collect(); | ||
let circuit_data = CircuitData::from_packed_operations( | ||
py, | ||
block_qargs.len() as u32, | ||
0, | ||
block.iter().map(|node| { | ||
let inst = dag.dag()[*node].unwrap_operation(); | ||
|
||
Ok(( | ||
inst.op.clone(), | ||
inst.params_view().iter().cloned().collect(), | ||
dag.get_qargs(inst.qubits) | ||
.iter() | ||
.map(|x| Qubit::new(block_index_map[x])) | ||
.collect(), | ||
vec![], | ||
)) | ||
}), | ||
Param::Float(0.), | ||
)?; | ||
let circuit = QUANTUM_CIRCUIT | ||
.get_bound(py) | ||
.call_method1(intern!(py, "_from_circuit_data"), (circuit_data,))?; | ||
let array = QI_OPERATOR | ||
.get_bound(py) | ||
.call1((circuit,))? | ||
.getattr(intern!(py, "data"))? | ||
.extract::<PyReadonlyArray2<Complex64>>()?; | ||
let matrix = array.as_array(); | ||
let identity: Array2<Complex64> = Array2::eye(2usize.pow(block_qargs.len() as u32)); | ||
if approx::abs_diff_eq!(identity, matrix) { | ||
for node in block { | ||
dag.remove_op_node(node); | ||
} | ||
} else { | ||
let unitary_gate = | ||
UNITARY_GATE | ||
.get_bound(py) | ||
.call1((array.to_object(py), py.None(), false))?; | ||
let clbit_pos_map = HashMap::new(); | ||
dag.replace_block_with_py_op( | ||
py, | ||
&block, | ||
unitary_gate, | ||
false, | ||
&block_index_map, | ||
&clbit_pos_map, | ||
)?; | ||
} | ||
} else { | ||
let block_index_map = [ | ||
*block_qargs.iter().min().unwrap(), | ||
*block_qargs.iter().max().unwrap(), | ||
]; | ||
let matrix = blocks_to_matrix(py, dag, &block, block_index_map).ok(); | ||
if let Some(matrix) = matrix { | ||
if force_consolidate | ||
|| decomposer.num_basis_gates_inner(matrix.view()) < basis_count | ||
|| block.len() > MAX_2Q_DEPTH | ||
|| (basis_gates.is_some() && outside_basis) | ||
|| (target.is_some() && outside_basis) | ||
{ | ||
if approx::abs_diff_eq!(aview2(&TWO_QUBIT_IDENTITY), matrix) { | ||
for node in block { | ||
dag.remove_op_node(node); | ||
} | ||
} else { | ||
let array = matrix.into_pyarray_bound(py); | ||
let unitary_gate = | ||
UNITARY_GATE | ||
.get_bound(py) | ||
.call1((array, py.None(), false))?; | ||
let qubit_pos_map = block_index_map | ||
.into_iter() | ||
.enumerate() | ||
.map(|(idx, qubit)| (qubit, idx)) | ||
.collect(); | ||
let clbit_pos_map = HashMap::new(); | ||
dag.replace_block_with_py_op( | ||
py, | ||
&block, | ||
unitary_gate, | ||
false, | ||
&qubit_pos_map, | ||
&clbit_pos_map, | ||
)?; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
if let Some(runs) = runs { | ||
for run in runs { | ||
if run.iter().any(|node| all_block_gates.contains(node)) { | ||
continue; | ||
} | ||
let first_inst_node = run[0]; | ||
let first_inst = dag.dag()[first_inst_node].unwrap_operation(); | ||
let first_qubits = dag.get_qargs(first_inst.qubits); | ||
|
||
if run.len() == 1 | ||
&& !is_supported( | ||
target, | ||
basis_gates.as_ref(), | ||
first_inst.op.name(), | ||
first_qubits, | ||
) | ||
{ | ||
let matrix = match get_matrix_from_inst(py, first_inst) { | ||
Ok(mat) => mat, | ||
Err(_) => continue, | ||
}; | ||
let array = matrix.into_pyarray_bound(py); | ||
let unitary_gate = UNITARY_GATE | ||
.get_bound(py) | ||
.call1((array, py.None(), false))?; | ||
dag.substitute_node_with_py_op(py, first_inst_node, &unitary_gate, false)?; | ||
continue; | ||
} | ||
let qubit = first_qubits[0]; | ||
let mut matrix = ONE_QUBIT_IDENTITY; | ||
|
||
let mut already_in_block = false; | ||
for node in &run { | ||
if all_block_gates.contains(node) { | ||
already_in_block = true; | ||
} | ||
let gate = dag.dag()[*node].unwrap_operation(); | ||
let operator = match get_matrix_from_inst(py, gate) { | ||
Ok(mat) => mat, | ||
Err(_) => { | ||
// Set this to skip this run because we can't compute the matrix of the | ||
// operation. | ||
already_in_block = true; | ||
break; | ||
} | ||
}; | ||
matmul_1q(&mut matrix, operator); | ||
} | ||
if already_in_block { | ||
continue; | ||
} | ||
if approx::abs_diff_eq!(aview2(&ONE_QUBIT_IDENTITY), aview2(&matrix)) { | ||
for node in run { | ||
dag.remove_op_node(node); | ||
} | ||
} else { | ||
let array = aview2(&matrix).to_owned().into_pyarray_bound(py); | ||
let unitary_gate = UNITARY_GATE | ||
.get_bound(py) | ||
.call1((array, py.None(), false))?; | ||
let mut block_index_map: HashMap<Qubit, usize> = HashMap::with_capacity(1); | ||
block_index_map.insert(qubit, 0); | ||
let clbit_pos_map = HashMap::new(); | ||
dag.replace_block_with_py_op( | ||
py, | ||
&run, | ||
unitary_gate, | ||
false, | ||
&block_index_map, | ||
&clbit_pos_map, | ||
)?; | ||
} | ||
} | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
pub fn consolidate_blocks_mod(m: &Bound<PyModule>) -> PyResult<()> { | ||
m.add_wrapped(wrap_pyfunction!(consolidate_blocks))?; | ||
Ok(()) | ||
} |
Oops, something went wrong.