Skip to content

Commit

Permalink
support_enumeration: Use util.combinatorics.next_k_array
Browse files Browse the repository at this point in the history
instead of _next_k_combination and _next_k_array
  • Loading branch information
oyamad committed Jan 5, 2018
1 parent f0bc279 commit a215f1f
Showing 1 changed file with 3 additions and 83 deletions.
86 changes: 3 additions & 83 deletions quantecon/game_theory/support_enumeration.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
import numpy as np
from numba import jit
from ..util.numba import _numba_linalg_solve
from ..util.combinatorics import next_k_array


def support_enumeration(g):
Expand Down Expand Up @@ -106,8 +107,8 @@ def _support_enumeration_gen(payoff_matrix0, payoff_matrix1):
actions)):
out[p][supp] = action[:-1]
yield out
_next_k_array(supps[1])
_next_k_array(supps[0])
next_k_array(supps[1])
next_k_array(supps[0])


@jit(nopython=True, cache=True)
Expand Down Expand Up @@ -180,84 +181,3 @@ def _indiff_mixed_action(payoff_matrix, own_supp, opp_supp, A, out):
if payoff > val:
return False
return True


@jit(nopython=True, cache=True)
def _next_k_combination(x):
"""
Find the next k-combination, as described by an integer in binary
representation with the k set bits, by "Gosper's hack".
Copy-paste from en.wikipedia.org/wiki/Combinatorial_number_system
Parameters
----------
x : int
Integer with k set bits.
Returns
-------
int
Smallest integer > x with k set bits.
"""
u = x & -x
v = u + x
return v + (((v ^ x) // u) >> 2)


@jit(nopython=True, cache=True)
def _next_k_array(a):
"""
Given an array `a` of k distinct nonnegative integers, return the
next k-array in lexicographic ordering of the descending sequences
of the elements. `a` is modified in place.
Parameters
----------
a : ndarray(int, ndim=1)
Array of length k.
Returns
-------
a : ndarray(int, ndim=1)
View of `a`.
Examples
--------
Enumerate all the subsets with k elements of the set {0, ..., n-1}.
>>> n, k = 4, 2
>>> a = np.arange(k)
>>> while a[-1] < n:
... print(a)
... a = _next_k_array(a)
...
[0 1]
[0 2]
[1 2]
[0 3]
[1 3]
[2 3]
"""
k = len(a)
if k == 0:
return a

x = 0
for i in range(k):
x += (1 << a[i])

x = _next_k_combination(x)

pos = 0
for i in range(k):
while x & 1 == 0:
x = x >> 1
pos += 1
a[i] = pos
x = x >> 1
pos += 1

return a

0 comments on commit a215f1f

Please sign in to comment.