Skip to content

Commit

Permalink
Merge pull request #247 from QunaSys/operator_to_sparse
Browse files Browse the repository at this point in the history
  • Loading branch information
toru4838 authored Oct 26, 2023
2 parents 32a082d + 2d11f50 commit 407ae82
Show file tree
Hide file tree
Showing 3 changed files with 261 additions and 0 deletions.
2 changes: 2 additions & 0 deletions packages/core/quri_parts/core/operator/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
pauli_product,
)
from .representation import transition_amp_comp_basis, transition_amp_representation
from .sparse import get_sparse_matrix
from .trotter_suzuki import trotter_suzuki_decomposition

PAULI_IDENTITY = PAULI_IDENTITY
Expand All @@ -44,4 +45,5 @@
"transition_amp_representation",
"zero",
"trotter_suzuki_decomposition",
"get_sparse_matrix",
]
144 changes: 144 additions & 0 deletions packages/core/quri_parts/core/operator/sparse.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce
from typing import Literal, Optional, Union

import numpy as np
import scipy.sparse as sparse
from typing_extensions import TypeAlias

from . import PAULI_IDENTITY, Operator, PauliLabel, SinglePauli, zero

_sparse_pauli_x = sparse.csc_matrix([[0.0, 1.0], [1.0, 0.0]], dtype=np.complex128)
_sparse_pauli_y = sparse.csc_matrix([[0.0, -1.0j], [1.0j, 0.0]], dtype=np.complex128)
_sparse_pauli_z = sparse.csc_matrix([[1.0, 0.0], [0.0, -1.0]], dtype=np.complex128)

_pauli_map = {
SinglePauli.X: _sparse_pauli_x,
SinglePauli.Y: _sparse_pauli_y,
SinglePauli.Z: _sparse_pauli_z,
}


_sparse_matrix_map: dict[str, sparse.spmatrix] = {
"csc": sparse.csc_matrix,
"csr": sparse.csr_matrix,
"bsr": sparse.bsr_matrix,
"coo": sparse.coo_matrix,
"dok": sparse.dok_matrix,
"dia": sparse.dia_matrix,
"lil": sparse.lil_matrix,
}

SparseMatrixName: TypeAlias = Literal["csc", "csr", "bsr", "coo", "dok", "dia", "lil"]


def _convert_pauli_map_to_other_format(format: SparseMatrixName) -> None:
if (
isinstance(_sparse_pauli_x, _sparse_matrix_map[format])
and isinstance(_sparse_pauli_y, _sparse_matrix_map[format])
and isinstance(_sparse_pauli_z, _sparse_matrix_map[format])
):
return

if format == "csc":
for i in _pauli_map:
_pauli_map[i] = _pauli_map[i].tocsc()
elif format == "csr":
for i in _pauli_map:
_pauli_map[i] = _pauli_map[i].tocsr()
elif format == "bsr":
for i in _pauli_map:
_pauli_map[i] = _pauli_map[i].tobsr()
elif format == "coo":
for i in _pauli_map:
_pauli_map[i] = _pauli_map[i].tocoo()
elif format == "dok":
for i in _pauli_map:
_pauli_map[i] = _pauli_map[i].todok()
elif format == "dia":
for i in _pauli_map:
_pauli_map[i] = _pauli_map[i].todia()
elif format == "lil":
for i in _pauli_map:
_pauli_map[i] = _pauli_map[i].tolil()
else:
assert False, f"format {format} is not supported."


def _convert_pauli_label_to_sparse(
single_pauli_label: PauliLabel,
n_qubits: Optional[int] = None,
format: SparseMatrixName = "csc",
) -> sparse.spmatrix:
"""Convert :class:`~PauliLabel` into scipy sparse matrix."""
_convert_pauli_map_to_other_format(format)
if n_qubits is None:
assert single_pauli_label != PAULI_IDENTITY, (
"n_qubits needs to be specified for PAULI_IDENTITY"
" to be converted to matrix."
)
n_qubits = max(single_pauli_label.qubit_indices()) + 1

single_pauli_list = [
sparse.identity(2, np.complex128, format=format) for _ in range(n_qubits)
]

if single_pauli_label != PAULI_IDENTITY:
assert n_qubits >= max(single_pauli_label.qubit_indices()) + 1, (
"The specified number of qubits should not be less then the length"
" of the pauli operator."
)
for bit, pauli in zip(*single_pauli_label.index_and_pauli_id_list):
single_pauli_list[n_qubits - bit - 1] = _pauli_map[SinglePauli(pauli)]

return reduce(lambda o1, o2: sparse.kron(o1, o2, format), single_pauli_list)


def _convert_operator_to_sparse(
operator: Operator, n_qubits: Optional[int] = None, format: SparseMatrixName = "csc"
) -> sparse.spmatrix:
"""Convert :class:`~Operator` into scipy sparse matrix."""
if operator == zero():
return (
_sparse_matrix_map[format](np.zeros((1, 1), dtype=np.complex128))
if n_qubits is None
else _sparse_matrix_map[format](
np.zeros((2**n_qubits, 2**n_qubits), dtype=np.complex128)
)
)

if n_qubits is None:
n_qubits = max(
[max(op.qubit_indices()) + 1 for op in operator if op != PAULI_IDENTITY]
)

return sum(
[
coeff * _convert_pauli_label_to_sparse(op, n_qubits, format)
for op, coeff in operator.items()
]
)


def get_sparse_matrix(
operator: Union[PauliLabel, Operator],
n_qubits: Optional[int] = None,
format: SparseMatrixName = "csc",
) -> sparse.spmatrix:
"""Convert :class:`~PauliLabel` and :class:`~Operator` into scipy sparse
matrix."""
if isinstance(operator, PauliLabel):
return _convert_pauli_label_to_sparse(operator, n_qubits, format)
elif isinstance(operator, Operator):
return _convert_operator_to_sparse(operator, n_qubits, format)
else:
assert False, "operator should be either a PauliLabel or an Operator object."
115 changes: 115 additions & 0 deletions packages/core/tests/core/operator/test_sparse.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce

import numpy as np
import pytest
import scipy.sparse as sparse

from quri_parts.core.operator import (
PAULI_IDENTITY,
Operator,
get_sparse_matrix,
pauli_label,
zero,
)

I = np.eye(2, dtype=np.complex128) # noqa: E741
X = np.array([[0, 1], [1, 0]], dtype=np.complex128)
Y = np.array([[0, -1j], [1j, 0]], dtype=np.complex128)
Z = np.array([[1, 0], [0, -1]], dtype=np.complex128)


class TestGetSparseMatrix:
def test_get_sparse_matrix_pauli_label(self) -> None:
test_pauli_label = pauli_label("X0 X1 Y3 Z4")
expected_matrix = reduce(np.kron, [Z, Y, I, X, X])
assert np.allclose(
get_sparse_matrix(test_pauli_label).toarray(), expected_matrix
)
assert isinstance(get_sparse_matrix(test_pauli_label), sparse.csc_matrix)

def test_get_sparse_matrix_sparse_matrix_type(self) -> None:
test_pauli_label = pauli_label("X0 X1 Y3 Z4")
assert isinstance(get_sparse_matrix(test_pauli_label), sparse.csc_matrix)

assert isinstance(
get_sparse_matrix(test_pauli_label, format="csr"), sparse.csr_matrix
)

assert isinstance(
get_sparse_matrix(test_pauli_label, format="bsr"), sparse.bsr_matrix
)

assert isinstance(
get_sparse_matrix(test_pauli_label, format="coo"), sparse.coo_matrix
)

assert isinstance(
get_sparse_matrix(test_pauli_label, format="dia"), sparse.dia_matrix
)

assert isinstance(
get_sparse_matrix(test_pauli_label, format="dok"), sparse.dok_matrix
)

assert isinstance(
get_sparse_matrix(test_pauli_label, format="lil"), sparse.lil_matrix
)

def test_get_sparse_matrix_nqubit_specified(self) -> None:
test_pauli_label = pauli_label("X0 X1 Y3 Z4")
expected_matrix = reduce(np.kron, [I, Z, Y, I, X, X])
assert np.allclose(
get_sparse_matrix(test_pauli_label, 6).toarray(), expected_matrix
)

with pytest.raises(
AssertionError,
match=(
"The specified number of qubits should not be less then the length"
" of the pauli operator."
),
):
get_sparse_matrix(test_pauli_label, 3)

def test_get_sparse_matrix_for_operator(self) -> None:
operator = Operator({pauli_label("X0 Y3"): -3, PAULI_IDENTITY: 8})
expected_matrix = -3 * reduce(np.kron, [Y, I, I, X]) + 8 * np.eye(16)
assert np.allclose(get_sparse_matrix(operator).toarray(), expected_matrix)

def test_get_sparse_matrix_for_zero(self) -> None:
operator = zero()
converted = get_sparse_matrix(operator).toarray()
assert np.allclose(converted, np.zeros((1, 1)))
assert converted.shape == (1, 1)

operator = zero()
converted = get_sparse_matrix(operator, 3).toarray()
assert np.allclose(converted, np.zeros((8, 8)))
assert converted.shape == (8, 8)

def test_get_sparse_matrix_for_identity(self) -> None:
test_pauli_label = PAULI_IDENTITY
assert np.allclose(get_sparse_matrix(test_pauli_label, 3).toarray(), np.eye(8))
with pytest.raises(
AssertionError,
match=(
"n_qubits needs to be specified for PAULI_IDENTITY"
" to be converted to matrix."
),
):
get_sparse_matrix(test_pauli_label)

operator = Operator({PAULI_IDENTITY: 8})
assert np.allclose(get_sparse_matrix(operator, 3).toarray(), 8 * np.eye(8))
with pytest.raises(ValueError):
get_sparse_matrix(operator)

1 comment on commit 407ae82

@github-actions
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please sign in to comment.