-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding quickTunerPreproc.py, 1/3 quick tuner perf config scripts.
This script accepts the *.debug files that are generated from tuningRunner.py as input and concatenates them into a single tsv file for use in the next step of the quick tuning pipeline: generation.
- Loading branch information
1 parent
0decd3f
commit 0489788
Showing
1 changed file
with
169 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
#!/usr/bin/env python3 | ||
|
||
""" | ||
quickTuner preprocessor script to combine .debug output files from tuningRunner.py or tuna-script.sh | ||
Usage: quickTunerPreprocess.py [-h] --input-dir INPUT_DIR --output OUTPUT [--op {gemm,conv}] [-d] [--file-ext FILE_EXT] | ||
Example Usage: | ||
python3 quickTunerPreprocess.py --input_dir /path/to/debug/files --ouput combined_data | ||
Note: | ||
If using MITuna edit MITuna/tuna/rocmlir/rocmlir_worker.py, editing: | ||
cmd = env_str + f" python3 ./bin/tuningRunner.py -q {special_args} \ | ||
--config='{config_string}' --mlir-build-dir `pwd` \ | ||
--output=- --tflops \ | ||
--rocmlir_gen_flags='--device={self.gpu_id}' 2>/dev/null" | ||
to: | ||
import uuid | ||
if not os.path.exists("./run"): | ||
os.makedirs("./run") | ||
unique_file_id = uuid.uuid4().hex | ||
file_id = os.path.join("./run", unique_file_id) | ||
cmd = env_str + f" python3 ./bin/tuningRunner.py -q {special_args} \ | ||
--config='{config_string}' --mlir-build-dir `pwd` \ | ||
--output={file_id} --tflops --debug \ | ||
--rocmlir_gen_flags='--device={self.gpu_id}' 2>/dev/null" | ||
""" | ||
|
||
import os | ||
import sys | ||
import argparse | ||
import pandas as pd | ||
import glob | ||
from sklearn.preprocessing import MinMaxScaler | ||
|
||
class qtPreprocessor(object): | ||
""" | ||
class to process *.debug files into a single script | ||
""" | ||
|
||
def __init__(self, pargs): | ||
self.input_dir = pargs.input_dir | ||
|
||
@staticmethod | ||
def __get_stats_gemm(df, ct): | ||
""" | ||
static helper method to get stats for a dataframe: | ||
(number of files processed, number of unique gemms, group by datatype) | ||
""" | ||
print(f"Files processed: {ct}") | ||
|
||
# num of dtypes | ||
dtypes= {t[0]:df for t,df in df.groupby(['DataType'])} | ||
|
||
print("Types found:") | ||
for dt in dtypes: | ||
print(f"\t{dt}") | ||
|
||
# num unique gemms in file: | ||
cols = ['TransA', 'TransB', 'G', 'M', 'N','K'] | ||
unique_gemms = df[cols].drop_duplicates() | ||
|
||
num_gemms = len(unique_gemms) | ||
print(f"Number of unique Gemms: {num_gemms}") | ||
for _,row in unique_gemms.iterrows(): | ||
tup = tuple(row) | ||
print(f"{tup[0]},{tup[1]},{tup[2]},{tup[3]},{tup[4]},{tup[5]}") | ||
|
||
|
||
@staticmethod | ||
def __get_stats_conv(df, ct): | ||
""" | ||
static helper method to get stats for a dataframe: | ||
(number of files processed, number of unique gemms, group by datatype) | ||
""" | ||
raise NotImplementedError() | ||
|
||
@staticmethod | ||
def process(input_dir, output_name=None, op='gemm', file_ext="debug", debug=False, normalize=True): | ||
""" | ||
staticmethod process() function that compiles output files into a single dataframe and saves to tsv file | ||
""" | ||
|
||
tsv_files = glob.glob(os.path.join(input_dir, f"*.{file_ext}")) | ||
print(os.path.join(input_dir, f"*.{file_ext}")) | ||
|
||
dfs = [] | ||
ct = 0 | ||
for file in tsv_files: | ||
df = pd.read_csv(file, sep='\t') | ||
if normalize: | ||
scaler = MinMaxScaler() | ||
df['TFlops'] = scaler.fit_transform(df[['TFlops']]) | ||
dfs.append(df) | ||
ct += 1 | ||
if not dfs: | ||
return None | ||
new_df = pd.concat(dfs, ignore_index=True) | ||
|
||
if output_name: | ||
new_df.to_csv(output_name, sep='\t') | ||
if debug: | ||
print(f"Saved to {output_name}") | ||
|
||
if debug: | ||
# here output some stats about files | ||
if op == 'gemm': | ||
qtPreprocessor.__get_stats_gemm(new_df, ct) | ||
elif op == 'conv': | ||
qtPreprocessor.__get_stats_conv(new_df, ct) | ||
|
||
return new_df | ||
|
||
|
||
def main(args=None): | ||
if args is None: | ||
args = sys.argv[1:] | ||
|
||
parser = argparse.ArgumentParser(prog='quickTunerPreprocess.py', | ||
description='Collect *.debug files from tuningRunner.py into a single file to be used in quickTunerGen.py') | ||
|
||
parser.add_argument('--input-dir', | ||
required=True, | ||
type=str, | ||
help='Input directory where files are saved') | ||
|
||
parser.add_argument('--output', | ||
required=True, | ||
type=str, | ||
help='File to save data to') | ||
|
||
parser.add_argument('--op', | ||
choices=['gemm', 'conv'], | ||
default='gemm', | ||
help='Formats debug print info') | ||
|
||
parser.add_argument('-d', '--debug', | ||
action='store_true', | ||
help='Prints debug information') | ||
|
||
parser.add_argument('--file-ext', | ||
default='debug', | ||
type=str, | ||
help='File extension') | ||
|
||
parser.add_argument('--normalize', | ||
default=True, | ||
action='store_true', | ||
help='Normalize on a per-file basis, necessary for quickTunerGen to work') | ||
|
||
pargs = parser.parse_args() | ||
|
||
|
||
qtPreprocessor.process(pargs.input_dir, pargs.output, pargs.op, pargs.file_ext, pargs.debug) | ||
|
||
if __name__ == '__main__': | ||
main(sys.argv[1:]) |