Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update bert4rec #1859

Merged
merged 9 commits into from
Sep 19, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 28 additions & 8 deletions recbole/model/sequential_recommender/bert4rec.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,11 @@
# @Author : Hui Wang
# @Email : hui.wang@ruc.edu.cn

# UPDATE
# @Time : 2023/9/4
# @Author : Enze Liu
# @Email : enzeeliu@foxmail.com

r"""
BERT4Rec
################################################
Expand Down Expand Up @@ -75,6 +80,10 @@ def __init__(self, config, dataset):

self.LayerNorm = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
self.dropout = nn.Dropout(self.hidden_dropout_prob)
self.output_ffn = nn.Linear(self.hidden_size, self.hidden_size)
self.output_gelu = nn.GELU()
self.output_ln = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
self.output_bias = nn.Parameter(torch.zeros(self.n_items))

# we only need compute the loss at the masked position
try:
Expand Down Expand Up @@ -124,7 +133,9 @@ def forward(self, item_seq):
trm_output = self.trm_encoder(
input_emb, extended_attention_mask, output_all_encoded_layers=True
)
output = trm_output[-1]
ffn_output = self.output_ffn(trm_output[-1])
ffn_output = self.output_gelu(ffn_output)
output = self.output_ln(ffn_output)
return output # [B L H]

def multi_hot_embed(self, masked_index, max_length):
Expand Down Expand Up @@ -172,8 +183,14 @@ def calculate_loss(self, interaction):
if self.loss_type == "BPR":
pos_items_emb = self.item_embedding(pos_items) # [B mask_len H]
neg_items_emb = self.item_embedding(neg_items) # [B mask_len H]
pos_score = torch.sum(seq_output * pos_items_emb, dim=-1) # [B mask_len]
neg_score = torch.sum(seq_output * neg_items_emb, dim=-1) # [B mask_len]
pos_score = (
torch.sum(seq_output * pos_items_emb, dim=-1)
+ self.output_bias[pos_items]
) # [B mask_len]
neg_score = (
torch.sum(seq_output * neg_items_emb, dim=-1)
+ self.output_bias[neg_items]
) # [B mask_len]
targets = (masked_index > 0).float()
loss = -torch.sum(
torch.log(1e-14 + torch.sigmoid(pos_score - neg_score)) * targets
Expand All @@ -183,8 +200,9 @@ def calculate_loss(self, interaction):
elif self.loss_type == "CE":
loss_fct = nn.CrossEntropyLoss(reduction="none")
test_item_emb = self.item_embedding.weight[: self.n_items] # [item_num H]
logits = torch.matmul(
seq_output, test_item_emb.transpose(0, 1)
logits = (
torch.matmul(seq_output, test_item_emb.transpose(0, 1))
+ self.output_bias
) # [B mask_len item_num]
targets = (masked_index > 0).float().view(-1) # [B*mask_len]

Expand All @@ -204,7 +222,9 @@ def predict(self, interaction):
seq_output = self.forward(item_seq)
seq_output = self.gather_indexes(seq_output, item_seq_len - 1) # [B H]
test_item_emb = self.item_embedding(test_item)
scores = torch.mul(seq_output, test_item_emb).sum(dim=1) # [B]
scores = (torch.mul(seq_output, test_item_emb)).sum(dim=1) + self.output_bias[
test_item
] # [B]
return scores

def full_sort_predict(self, interaction):
Expand All @@ -216,7 +236,7 @@ def full_sort_predict(self, interaction):
test_items_emb = self.item_embedding.weight[
: self.n_items
] # delete masked token
scores = torch.matmul(
seq_output, test_items_emb.transpose(0, 1)
scores = (
torch.matmul(seq_output, test_items_emb.transpose(0, 1)) + self.output_bias
) # [B, item_num]
return scores