Raphaël Manus1, 2 · Marc Christie1 · Samuel Boivin1 · Pascal Guehl2
1Inria, IRISA, CNRS, Univ. Rennes 2LIX, Ecole Polytechnique, IP Paris
Update depthlight.yml
with correct CUDA version for PyTorch if needed.
git clone --recurse-submodules https://github.com/RaphaelManus/DepthLight
cd DepthLight
conda env create -f depthlight.yml
conda env create -f LANet.yml
conda activate LANet
pip install numpy --upgrade
conda activate depthlight
We encourage users to structure their data directories in the following way:
- data
'- input
| - img1.jpg
| - img2.png
| - ...
'- ldr_pano
| - ...
'- hdr_pano
| - ...
'- usd
| - ...
python run.py \
--input <path>
--type <ldr_lfov | ldr_pano | hdr_pano> \
--output <path> \
--fov <fov> \
--prompt <"optional prompt">
Options:
--input
or-i
: Point it to an image directory storing all interested images--type
or-t
(optional): By default, expected input type is LDR LFOV images.--output
or-o
(optional): You can point it to a different directory than the input if needed.--fov
or-f
(optional): Specify the fov of the inputs, default is90.0°
.--prompt
or-p
(optional): Specify a prompt to guide the generation, default is"indoor"
.
For example:
python run.py -i ./data/input -t ldr_lfov -f 90 -p "indoor"
See the unreal engine folder.