Skip to content

RodrigoGantier/SPADE_E2VID

Repository files navigation

SPADE_E2VID

Event to video reconstruction with spade module

Overview

This repository contains the CODE for the paper:SPADE-E2VID: Spatially-Adaptive Denormalization for Event-Based Video Reconstruction
. SPADE_E2VID uses a ConvLSTM and SPADE layers to reconstruct event-based videos. Our model compared with E2VID, have better reconstruction quality in early frames also has better contrast for all the reconstructios. We provide the code for training and testing.

Watch our video on youtube.
Video

SPADE_E2VID vs E2VID
A comparizon for SPADE_E2VID (our model) and E2VID.

SPADE_E2VID calendar
Non-polarity Event-based video recontruction (Chinese Calendar).

SPADE_E2VID Shanghai Jiaotong Gate
Non-polarity Event-based video recontruction (the Shanghai Jiaotong Gate).

Getting Started

  • Prerequisites
    Install PyTorch 1.3.0 (or higher), TorchVision, kornia, opencv, tqdm, pathlib, pandas, skimage, numpy, pytorch-msssim

  • Clone this repository

git clone https://github.com/RodrigoGantier/SPADE_E2VID.git
  • Download the evaluation datasets and weigths. your directory tree should be as follows:

├── SPADE_E2VID
│ ├── cedric_firenet
│ ├── dvs_datasets
│ │ ├── bound_1
│ │ ├── bound_2
│ │ ├── bound_3
│ │ ├── boxes_6dof
│ │ ├── calibration
│ │ ├── dynamic_6dof
│ │ ├── office_zigzag
│ │ ├── poster_6dof
│ │ └── slider_depth
│ ├── models
│ │ ├── E2VID.pth.tar
│ │ ├── E2VID_*.pth
│ │ ├── E2VID_lightweight.pth.tar
│ │ ├── firenet_1000.pth.tar
│ │ ├── SPADE_E2VID.pth
│ │ ├── SPADE_E2VID_2.pth
│ │ └── SPADE_E2VID_ABS.pth
│ ├── my_org_model
│ ├── evs
│ ├── org_e2vid
│ ├── res
│ └── spynet

Code

To run data evaluation with all models use the following code:

python benchmark.py --root_dir /path/to/data/SPADE_E2VID

To run data evaluation with only one dataset and SPADE_E2VID, (you can choose fron 0 to 5):

python test.py --root_dir /path/to/data/SPADE_E2VID --data_n 0

To train ESPADE_E2VID you can run:

python train_e2v.py --root_dir /path/to/data/e2v_public --bs 2

Tested in ubuntu 18.04.4 LTS

Evaluation datasets

DVS datasets
if you want to download one by one, the individual links are below

calibration dataset
boxes_6dof dataset
slider_depth dataset
poster_6dof dataset
office_zigzag dataset
dynamic_6dof dataset

Non-polarity evaluation datasets

bund_1 dataset
bund_2 dataset
bund_3 dataset

Network weigths

SPADE_E2VID
SPADE_E2VID_ABS
E2VID_
E2VID_lightweight
E2VID
FireNet

Trainind dataset

The Training dataset can be downkiad fron this link, are just 30 samples from the origianl 1000 samples

  • NOTE: All the data is about 17.1 GB

Citation:

@article{cadena2021spade,
  title={SPADE-E2VID: Spatially-Adaptive Denormalization for Event-Based Video Reconstruction},
  author={Cadena, Pablo Rodrigo Gantier and Qian, Yeqiang and Wang, Chunxiang and Yang, Ming},
  journal={IEEE Transactions on Image Processing},
  volume={30},
  pages={2488--2500},
  year={2021},
  publisher={IEEE}
}

About

Event to video reconstruction with spade module

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published