Skip to content

We evaluate many models used for biomedical and clinical nlp tasks, and train new models that perform much better.

License

Notifications You must be signed in to change notification settings

RuiBai1999/bio-lm

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Biomedical and Clinical Language Models

This repository contains code and models to support the research paper Pretrained Language Models for Biomedical and Clinical Tasks: Understanding and Extending the State-of-the-Art


Facebook AI Research and UCL NLP


Models

Pytorcch Model checkpoints are available to download below in fairseq and 🤗 Transformers format .

The overall-best RoBERTa-Large sized model from our experiments is RoBERTa-large-PM-M3-Voc, and the overall-best RoBERTa-based size model is RoBERTa-base-PM-M3-Voc-distill-align.

Model Size Description 🤗 Transformers Link fairseq link
RoBERTa-base-PM base Pre-trained on PubMed and PMC download download
RoBERTa-base-PM-Voc base Pre-trained on PubMed and PMC with a BPE Vocab learnt from PubMed download download
RoBERTa-base-PM-M3 base Pre-trained on PubMed and PMC and MIMIC-III download download
RoBERTa-base-PM-M3-Voc base Pre-trained on PubMed and PMC and MIMIC-III with a BPE Vocab learnt from PubMed download download
RoBERTa-base-PM-M3-Voc-train-longer base Pre-trained on PubMed and PMC and MIMIC-III with a BPE Vocab learnt from PubMed with an additional 50K steps download download
RoBERTa-base-PM-M3-Voc-distill base Base-sized model distilled from RoBERTa-large-PM-M3-Voc download download
RoBERTa-base-PM-M3-Voc-distill-align base Base-sized model distilled from RoBERTa-large-PM-M3-Voc with additional alignment objective download download
RoBERTa-large-PM-M3 large Pre-trained on PubMed and PMC and MIMIC-III download download
RoBERTa-large-PM-M3-Voc large Pre-trained on PubMed and PMC and MIMIC-III with a BPE Vocab learnt from PubMed download download

To use these models in 🤗 Transformers, (developed using Transformers version 2.6.0), download the desired model, untar it, and use an AutoModel class to load it, passing the path to the model_directory, as shown in the snippet below:

$ wget https://link/to/RoBERTa-base-PM-hf.tar.gz
$ tar -zxvf RoBERTa-base-PM-hf.tar.gz
$ python
>>> from transformers import AutoModel, AutoConfig
>>> config = AutoConfig.from_pretrained(
    "RoBERTa-base-PM-hf",
)
>>> model = AutoModel.from_pretrained("RoBERTa-base-PM-hf", config=config)

Code

Installation and Dependencies

We recommend using conda, python 3.7, and pytorch 1.4 with cuda 10.1 to match our development environment:

conda create -y -n bio-lm-env python=3.7
conda activate bio-lm-env
conda install -y pytorch==1.4 torchvision cudatoolkit=10.1 -c pytorch

# Optional, but recommended: To use fp16 training, install Apex:
git clone https://github.com/NVIDIA/apex.git
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--deprecated_fused_adam" ./
cd ../


# install other dependencies:
conda install scikit-learn
conda install pandas
pip install -r requirements.txt
python -m spacy download en_core_web_sm

# Install transformers, and check out the appropriate commit to match our development environment
git clone git@github.com:huggingface/transformers.git
cd transformers
git reset --hard 601ac5b1dc1438f00d09696588f2deb0f045ae3b
pip install -e .
cd ..

# get BLUE Benchmark, needed for some preprocessing
git clone git@github.com:ncbi-nlp/BLUE_Benchmark.git
cd BLUE_Benchmark
git reset --hard b6216f2cb9bba209ee7028fc874123d8fd5a810c
cd ..


# get official conllevalpy
wget https://raw.githubusercontent.com/spyysalo/conlleval.py/master/conlleval.py

Downloading Raw Task data:

Data Preprocessing and data is set up to match the approaches in BLUE, BioBERT and ClinicalBERT. The following code will download the datasets and preprocess them appropriately.

First, download the raw data by running

bash preprocessing/download_all_task_data.sh

This will download the raw task data from BLUE and BioBERT, and place them in <project_root>/data/raw_data.

There are the following exceptions for data which require signing special licenses to access:

  1. MedNLI requires PhysioNET credentials, so must be applied for and downloaded separately, see here for details. Once you have obtained access to the dataset, download the mednli dataset files from PhysioNet to the directory <project_root>/data/raw_data/mednli_raw_data.
  2. I2B2-2010 data requires signing the n2nb2 license. See here for details. Once you have obtained access, download the I2B2-2010 files concept_assertion_relation_training_data.tar.gz, test_data.tar.gz and reference_standard_for_test_data.tar.gz and unzip them in the <project_root>/data/raw_data/i2b2-raw-data/i2b2-2010 directory.
  3. I2B2-2012 data requires signing the n2nb2 license. See here for details. Once you have obtained access, download the I2B2-2012 files 2012-07-15.original-annotation.release.tar.gz, and 2012-08-08.test-data.event-timex-groundtruth.tar.gz and unzip them in the <project_root>/data/raw_data/i2b2-raw-data/i2b2-2012 directory.
  4. I2B2-2014 data requires signing the n2nb2 license. See here for details. Once you have obtained access, download the I2B2-2014 files training-RiskFactors-Gold-Set1.tar.gz, training-RiskFactors-Gold-Set2.tar.gz and testing-PHI-Gold-fixed.tar.gz and unzip them in the <project_root>/data/raw_data/i2b2-raw-data/i2b2-2014 directory.

Preprocessing the Raw Task data:

The datasets then need to be preprocessed. The preprocessed data will be written to <project root>/data/tasks

The classification datasets can be preprocessed by running:

bash preprocessing/preprocess_all_classification_datasets.sh

The NER datasets must be preprocessed for each model's tokenizer you want train, only to ensure that sequences are not longer than a maximum length (512 tokens):

# Preprocess for roberta-large's tokenizer:
bash preprocessing/preprocess_all_sequence_labelling_datasets.sh roberta-large

Running Classification Experiments

Once data have been preprocessed, Classification experiments can be run using biolm.run_classification. An example command is below:

TASK="ChemProt"
DATADIR="data/tasks/ChemProt"
MODEL=roberta-large
MODEL_TYPE=roberta
python -m biolm.run_classification \
    --task_name ${TASK}\
    --data_dir ${DATADIR}\
    --model_type ${MODEL_TYPE}\
    --model_name_or_path ${MODEL}\
    --tokenizer_name ${MODEL}\
    --output_dir path/to/save/model/to \
    --fp16\
    --max_seq_length 512\
    --num_train_epochs 10\
    --per_gpu_train_batch_size 8\
    --per_gpu_eval_batch_size 8\
    --save_steps 200\
    --seed 10\
    --gradient_accumulation_steps 2\
    --learning_rate 2e-5\
    --do_train\
    --do_eval\
    --warmup_steps 0\
    --overwrite_output_dir\
    --overwrite_cache

To see more options, print help options: python -m biolm.run_classification -h

To test a model on test data, use the --do_test option on a trained checkpoint:

TASK="ChemProt"
DATADIR="data/tasks/ChemProt"
MODEL_TYPE="roberta"
CHECKPOINT_DIR=ckpts/${TASK}
python -m biolm.run_classification \
    --task_name ${TASK}\
    --data_dir ${DATADIR}\
    --model_type ${MODEL_TYPE}\
    --model_name_or_path ${CHECKPOINT_DIR}\
    --tokenizer_name ${CHECKPOINT_DIR}\
    --output_dir ${CHECKPOINT_DIR} \
    --fp16\
    --max_seq_length 512\
    --per_gpu_eval_batch_size 8\
    --overwrite_output_dir\
    --overwrite_cache \
    --do_test

This will write test predictions to the model directory under the file test_predictions.tsv and the dataset-appropriate test set scores under test_results.txt

Note: GAD and EuADR are split 10 ways for cross-validation. Each fold can be run by appending the fold number, e.g. GAD3

Running Sequence Labelling Experiments

Once data have been preprocessed, Sequence Labelling experiments can be run using biolm.run_sequence_labelling. An example command is below:

TASK="BC5CDR-chem"
DATADIR="data/tasks/BC5CDR-chem.model=roberta-large.maxlen=512"
MODEL=roberta-large
MODEL_TYPE=roberta
python -m biolm.run_sequence_labelling \
    --data_dir ${DATADIR} \
    --model_type ${MODEL_TYPE} \
    --labels ${DATADIR}/labels.txt \
    --model_name_or_path ${MODEL} \
    --output_dir path/to/save/model/to \
    --max_seq_length  512 \
    --num_train_epochs 20 \
    --per_gpu_train_batch_size 8 \
    --save_steps 500 \
    --seed 10 \
    --gradient_accumulation_steps 4 \
    --do_train \
    --do_eval \
    --eval_all_checkpoints

To see more options, print help options: python -m biolm.run_sequence_labelling -h

To test a model on test data, use the --do_predict option on a trained checkpoint:

TASK="BC5CDR-chem"
DATADIR="data/tasks/BC5CDR-chem.model=roberta-large.maxlen=512"
CHECKPOINT_DIR=ckpts/${TASK}/checkpoint-1500
MODEL_TYPE=roberta
python -m biolm.run_sequence_labelling \
    --data_dir ${DATADIR} \
    --model_type ${MODEL_TYPE} \
    --labels ${DATADIR}/labels.txt \
    --model_name_or_path ${CHECKPOINT_DIR} \
    --output_dir ${CHECKPOINT_DIR} \
    --max_seq_length  512 \
    --per_gpu_eval_batch_size 8 \
    --seed 10 \
    --do_predict

This will write test predictions to the model directory under the file test_predictions.txt and scores under test_results.txt. The official CoNLL evaluation script can then be calculated on the test_predictions.txt file python2 conlleval.py path/to/test_predictions.txt.

Citation

To cite this work, please use the following bibtex:

@inproceedings{lewis-etal-2020-pretrained,
    title = "Pretrained Language Models for Biomedical and Clinical Tasks: Understanding and Extending the State-of-the-Art",
    author = "Lewis, Patrick  and
      Ott, Myle  and
      Du, Jingfei  and
      Stoyanov, Veselin",
    booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.17",
    pages = "146--157",
}

LICENSE

The code, models and data in this repository is licenced according the LICENSE file, with the following exceptions:

  • conlleval.py is licensed according to the MIT License.
  • The BLUE Benchmark, an external dependency cloned and used for some preprocessing tasks, is licenced according to the licence it is distributed with.
  • preprocess_i2b2_2010_ner.py, preprocess_i2b2_2012_ner.py, preprocess_i2b2_2014_ner.py are adapted from preprocessing jupyter notebooks in ClinicalBERT, and are licensed according to the MIT License.
  • run_classification.py and utils_classification.py are licensed according the Apache 2.0 License
  • run_sequence_labelling.py and utils_sequence_labelling.py are licensed according the Apache 2.0 License

About

We evaluate many models used for biomedical and clinical nlp tasks, and train new models that perform much better.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.7%
  • Shell 8.3%