Skip to content

RuiyangJu/TripleNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 

Repository files navigation

TripleNet

Efficient Convolutional Neural Networks on Raspberry Pi for Image Classification

PWC

Architecture

Layers

Citation

If you find TripleNet useful in your research, please consider citing:

@article{ju2023efficient,
  title={Efficient convolutional neural networks on Raspberry Pi for image classification},
  author={Ju, Rui-Yang and Lin, Ting-Yu and Jian, Jia-Hao and Chiang, Jen-Shiun},
  journal={Journal of Real-Time Image Processing},
  volume={20},
  number={2},
  pages={1--9},
  year={2023},
  publisher={Springer}
}

Contents

  1. Introduction
  2. Usage
  3. Config
  4. Model
  5. Results
  6. Requirements
  7. References

Usage

python3 main.py

optional arguments:

--lr                default=1e-3    learning rate
--epoch             default=200     number of epochs tp train for
--trainBatchSize    default=64     training batch size
--testBatchSize     default=64     test batch size

pre-training:

return TripleNet(pretrained=True, weight_path='your pre-trained model address')

Config

Optimizer
  • Adam Optimizer
Learning Rate
  • 1e-3 for [1,74] epochs
  • 5e-4 for [75,149] epochs
  • 2.5e-4 for [150,200) epochs

Model

Model Layer Channel Growth Rate
TripleNet-S 6, 16, 16, 16, 2 128, 192, 256, 320, 720 32, 16, 20, 40, 160
TripleNet-B 6, 16, 16, 16, 3 128, 192, 256, 320, 1080 32, 16, 20, 40, 160

Results

Name Raspberry Pi 4 Time* (ms) C10 Error (%) FLOPs (G) MAdd (G) Memory (MB) #Params (M)
TripleNet-S 40.6 13.05 4.17 8.32 90.25 9.67
ShuffleNet 44.1 13.35 2.22 4.31 617.00 1.01
ThreshNet-28 45.3 14.75 2.28 4.55 83.26 10.18
TripleNet-B 65.1 12.97 4.29 8.57 91.33 12.63
MobileNetV2 67.4 14.06 2.42 4.75 384.78 2.37
MobileNet 76.8 16.12 2.34 4.63 230.84 3.32
ThreshNet-95 77.9 13.31 4.07 8.12 132.34 16.19
EfficientNet-B0 85.4 13.40 1.51 2.99 203.74 3.60
HarDNet-85 92.5 13.89 9.10 18.18 74.65 36.67

* Raspberry Pi Time is the inference time per image on Raspberry Pi 4

Requirements

Raspberry Pi 4 Model B 4GB

  • python3 - 3.9.2
  • torch - 1.11.0
  • torchvision - 0.12
  • numpy - 1.22.3

References

GitHub