Skip to content

Python CLI tool to visually detect photoshopped pictures using Error Level Analysis

License

Notifications You must be signed in to change notification settings

SandroMartens/jfake

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 

Repository files navigation

jfake

Python CLI tool to visually detect photoshopped pictures using ELA

usage:

jfake.py [-h] --input INPUT [--output OUTPUT] [--verbose] [--debug] [--quality QUALITY] [--multiplier MULTIPLIER] [--benchmark] [--entropy] [--psnr] [--numba]

Required arguments:

--input STR, -i STR Input image file [BMP], [GIF], [JPEG], [PNG], [PPM], [TIFF]

Optional arguments:

-h, --help show this help message and exit
--output PATH, -o PATH Define output folder jfake (default: output)
--verbose, -v Write all steps to terminal (default: False)
--debug, -d Write all steps to output folder (default: False)
--quality INT, -q INT JPEG-Quality [1-99] jfake (default: 50)
--multiplier INT, -m INT Multiplier jfake (default: Automatic)
--benchmark, -b Write needed time per step in file (default: False)
--entropy, -e Calculate entropy in each processing step (default: False)
--psnr, -p Calculate signal-to-noise-ratio (PSNR) (default: False)
--numba, -n Use numba jit compiler for better performance (default: False)

Examples:

jfake.py -i lenna.png
jfake.py --input lenna.png --entropy
jfake.py -i lenna.png -o lenna -vdbepn

About

Python CLI tool to visually detect photoshopped pictures using Error Level Analysis

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%