Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added analyticless_test_convergence for SDDEProblems #48

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions src/DiffEqDevTools.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,9 @@ import Base: length

import DiffEqBase: AbstractODEProblem, AbstractDDEProblem,
AbstractODESolution, AbstractRODEProblem, AbstractSDEProblem,
AbstractDAEProblem, @def, ConvergenceSetup, DEAlgorithm,
ODERKTableau, AbstractTimeseriesSolution, ExplicitRKTableau,
AbstractDAEProblem, AbstractSDDEProblem,
@def, ConvergenceSetup, DEAlgorithm, ODERKTableau,
AbstractTimeseriesSolution, ExplicitRKTableau,
ImplicitRKTableau

import LinearAlgebra: norm, I
Expand Down
13 changes: 11 additions & 2 deletions src/convergence.jl
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ function test_convergence(dts::AbstractArray,prob::Union{AbstractRODEProblem,Abs
end

function analyticless_test_convergence(dts::AbstractArray,
prob::Union{AbstractRODEProblem,AbstractSDEProblem},
prob::Union{AbstractRODEProblem,AbstractSDEProblem,AbstractSDDEProblem},
alg,test_dt;trajectories=100,
save_everystep=true,timeseries_steps=1,
timeseries_errors=save_everystep,adaptive=false,
Expand All @@ -74,9 +74,18 @@ function analyticless_test_convergence(dts::AbstractArray,
brownian_values2 = cumsum([[zeros(size(prob.noise_rate_prototype,2))];[sqrt(test_dt)*randn(size(prob.noise_rate_prototype,2)) for i in 1:length(t)-1]])
end
np = NoiseGrid(t,brownian_values,brownian_values2)
_prob = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,

if prob isa AbstractSDDEProblem
_prob = SDDEProblem(prob.f,prob.g,prob.u0,prob.h,prob.tspan,prob.p,
noise = np, noise_rate_prototype = prob.noise_rate_prototype,
constant_lags = prob.constant_lags, dependent_lags = prob.dependent_lags,
neutral = prob.neutral, order_discontinuity_t0 = prob.order_discontinuity_t0, prob.kwargs...);
else
_prob = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,prob.p,
noise=np,
noise_rate_prototype=prob.noise_rate_prototype);
end

true_sol = solve(_prob,alg;adaptive=adaptive,dt=test_dt);
for i in 1:length(dts)
sol = solve(_prob,alg;dt=dts[i],adaptive=adaptive);
Expand Down