We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
When I run this code:
using DiffEqFlux, DifferentialEquations, GalacticOptim, Distributions nn = Chain( Dense(1, 3, tanh), Dense(3, 1, tanh), ) |> f32 tspan = (0.0f0, 10.0f0) ffjord_mdl = FFJORD(nn, tspan, Tsit5()) data_dist = Normal(6.0f0, 0.7f0) train_data = rand(data_dist, 1, 100) function loss(θ) logpx, λ₁, λ₂ = ffjord_mdl(train_data, θ) -mean(logpx) end adtype = GalacticOptim.AutoReverseDiff() res1 = DiffEqFlux.sciml_train(loss, ffjord_mdl.p, ADAM(0.1), adtype; maxiters=100)
I get this error:
ERROR: LoadError: MethodError: no method matching Float32(::ReverseDiff.TrackedReal{Float64, Float32, Nothing}) Closest candidates are: (::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat at rounding.jl:200 (::Type{T})(::T) where T<:Number at boot.jl:760 (::Type{T})(::AbstractChar) where T<:Union{AbstractChar, Number} at char.jl:50 ... Stacktrace: [1] _broadcast_getindex_evalf @ .\broadcast.jl:648 [inlined] [2] _broadcast_getindex @ .\broadcast.jl:621 [inlined] [3] getindex @ .\broadcast.jl:575 [inlined] [4] copy @ .\broadcast.jl:922 [inlined] [5] materialize(bc::Base.Broadcast.Broadcasted{Base.Broadcast.DefaultArrayStyle{2}, Nothing, Type{Float32}, Tuple{Matrix{ReverseDiff.TrackedReal{Float64, Float32, Nothing}}}}) @ Base.Broadcast .\broadcast.jl:883 [6] WARNING: both Flux and Iterators export "flatten"; uses of it in module DiffEqFlux must be qualified WARNING: both Flux and Distributions export "params"; uses of it in module DiffEqFlux must be qualified (::FFJORD{Chain{Tuple{Dense{typeof(tanh), Matrix{Float32}, Vector{Float32}}, Dense{typeof(tanh), Matrix{Float32}, Vector{Float32}}}}, Vector{Float32}, Flux.var"#60#62"{Chain{Tuple{Dense{typeof(tanh), Matrix{Float32}, Vector{Float32}}, Dense{typeof(tanh), Matrix{Float32}, Vector{Float32}}}}}, FullNormal, Tuple{Float32, Float32}, Tuple{Tsit5}, Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}})(x::Matrix{Float32}, p::ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}, e::Matrix{Float32}; regularize::Bool, monte_carlo::Bool) @ DiffEqFlux C:\Users\Hossein Pourbozorg\.julia\packages\DiffEqFlux\N7blG\src\ffjord.jl:215 [7] FFJORD (repeats 2 times) @ C:\Users\Hossein Pourbozorg\.julia\packages\DiffEqFlux\N7blG\src\ffjord.jl:192 [inlined] [8] loss(θ::ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}) @ Main C:\Users\Hossein Pourbozorg\Code Projects\Mine\ffjord-report-issues\iss-4.jl:14 [9] #74 @ C:\Users\Hossein Pourbozorg\.julia\packages\DiffEqFlux\N7blG\src\train.jl:84 [inlined] [10] (::GalacticOptim.var"#229#238"{OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#74#79"{typeof(loss)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Nothing})(::ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}) @ GalacticOptim C:\Users\Hossein Pourbozorg\.julia\packages\GalacticOptim\bEh06\src\function\reversediff.jl:6 [11] #231 @ C:\Users\Hossein Pourbozorg\.julia\packages\GalacticOptim\bEh06\src\function\reversediff.jl:9 [inlined] [12] ReverseDiff.GradientTape(f::GalacticOptim.var"#231#240"{Tuple{}, GalacticOptim.var"#229#238"{OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#74#79"{typeof(loss)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Nothing}}, input::Vector{Float32}, cfg::ReverseDiff.GradientConfig{ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}}) @ ReverseDiff C:\Users\Hossein Pourbozorg\.julia\packages\ReverseDiff\E4Tzn\src\api\tape.jl:199 [13] gradient!(result::Vector{Float32}, f::Function, input::Vector{Float32}, cfg::ReverseDiff.GradientConfig{ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}}) @ ReverseDiff C:\Users\Hossein Pourbozorg\.julia\packages\ReverseDiff\E4Tzn\src\api\gradients.jl:41 [14] (::GalacticOptim.var"#230#239"{GalacticOptim.var"#229#238"{OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#74#79"{typeof(loss)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Nothing}})(::Vector{Float32}, ::Vector{Float32}) @ GalacticOptim C:\Users\Hossein Pourbozorg\.julia\packages\GalacticOptim\bEh06\src\function\reversediff.jl:9 [15] macro expansion @ C:\Users\Hossein Pourbozorg\.julia\packages\GalacticOptim\bEh06\src\solve\flux.jl:43 [inlined] [16] macro expansion @ C:\Users\Hossein Pourbozorg\.julia\packages\GalacticOptim\bEh06\src\solve\solve.jl:35 [inlined] [17] __solve(prob::OptimizationProblem{false, OptimizationFunction{false, GalacticOptim.AutoReverseDiff, OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#74#79"{typeof(loss)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, GalacticOptim.var"#230#239"{GalacticOptim.var"#229#238"{OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#74#79"{typeof(loss)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Nothing}}, GalacticOptim.var"#232#241"{GalacticOptim.var"#229#238"{OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#74#79"{typeof(loss)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Nothing}}, GalacticOptim.var"#237#246", Nothing, Nothing, Nothing}, Vector{Float32}, SciMLBase.NullParameters, Nothing, Nothing, Nothing, Nothing, Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, opt::ADAM, data::Base.Iterators.Cycle{Tuple{GalacticOptim.NullData}}; maxiters::Int64, cb::Function, progress::Bool, save_best::Bool, kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}) @ GalacticOptim C:\Users\Hossein Pourbozorg\.julia\packages\GalacticOptim\bEh06\src\solve\flux.jl:41 [18] #solve#474 @ C:\Users\Hossein Pourbozorg\.julia\packages\SciMLBase\UIp7W\src\solve.jl:3 [inlined] [19] sciml_train(::typeof(loss), ::Vector{Float32}, ::ADAM, ::GalacticOptim.AutoReverseDiff; lower_bounds::Nothing, upper_bounds::Nothing, maxiters::Int64, kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}) @ DiffEqFlux C:\Users\Hossein Pourbozorg\.julia\packages\DiffEqFlux\N7blG\src\train.jl:89 [20] top-level scope @ C:\Users\Hossein Pourbozorg\Code Projects\Mine\ffjord-report-issues\iss-4.jl:19 in expression starting at C:\Users\Hossein Pourbozorg\Code Projects\Mine\ffjord-report-issues\iss-4.jl:19
In this environment:
(ffjord-report-issues) pkg> status Status `C:\Users\Hossein Pourbozorg\Code Projects\Mine\ffjord-report-issues\Project.toml` [aae7a2af] DiffEqFlux v1.43.0 [0c46a032] DifferentialEquations v6.19.0 [31c24e10] Distributions v0.25.14 [a75be94c] GalacticOptim v2.0.3 [c3e4b0f8] Pluto v0.15.1 julia> versioninfo() Julia Version 1.6.1 Commit 6aaedecc44 (2021-04-23 05:59 UTC) Platform Info: OS: Windows (x86_64-w64-mingw32) CPU: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-11.0.1 (ORCJIT, skylake)
The text was updated successfully, but these errors were encountered:
I think it's related to type conversion in FFJORD at this line:
DiffEqFlux.jl/src/ffjord.jl
Line 215 in 4bcfc23
Sorry, something went wrong.
This got fixed.
No branches or pull requests
When I run this code:
I get this error:
In this environment:
The text was updated successfully, but these errors were encountered: