Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Lazy rolling_window #5775

Merged
merged 2 commits into from
Mar 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion docs/src/whatsnew/latest.rst
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,8 @@ This document explains the changes made to Iris for this release
🚀 Performance Enhancements
===========================

#. N/A
#. `@bouweandela`_ made :func:`iris.util.rolling_window` work with lazy arrays.
(:pull:`5775`)


🔥 Deprecations
Expand Down
7 changes: 7 additions & 0 deletions lib/iris/tests/unit/util/test_rolling_window.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
# importing anything else
import iris.tests as tests # isort:skip

import dask.array as da
import numpy as np
import numpy.ma as ma

Expand Down Expand Up @@ -35,6 +36,12 @@ def test_2d(self):
result = rolling_window(a, window=3, axis=1)
self.assertArrayEqual(result, expected_result)

def test_3d_lazy(self):
a = da.arange(2 * 3 * 4).reshape((2, 3, 4))
expected_result = np.arange(2 * 3 * 4).reshape((1, 2, 3, 4))
result = rolling_window(a, window=2, axis=0).compute()
self.assertArrayEqual(result, expected_result)

def test_1d_masked(self):
# 1-d masked array input
a = ma.array([0, 1, 2, 3, 4], mask=[0, 0, 1, 0, 0], dtype=np.int32)
Expand Down
45 changes: 25 additions & 20 deletions lib/iris/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
# This file is part of Iris and is released under the BSD license.
# See LICENSE in the root of the repository for full licensing details.
"""Miscellaneous utility functions."""
from __future__ import annotations

from abc import ABCMeta, abstractmethod
from collections.abc import Hashable, Iterable
Expand Down Expand Up @@ -281,7 +282,12 @@ def guess_coord_axis(coord):
return axis


def rolling_window(a, window=1, step=1, axis=-1):
def rolling_window(
a: np.ndarray | da.Array,
window: int = 1,
step: int = 1,
axis: int = -1,
) -> np.ndarray | da.Array:
"""Make an ndarray with a rolling window of the last dimension.

Parameters
Expand Down Expand Up @@ -322,34 +328,33 @@ def rolling_window(a, window=1, step=1, axis=-1):
See more at :doc:`/userguide/real_and_lazy_data`.

"""
# NOTE: The implementation of this function originates from
# https://github.com/numpy/numpy/pull/31#issuecomment-1304851 04/08/2011
if window < 1:
raise ValueError("`window` must be at least 1.")
if window > a.shape[axis]:
raise ValueError("`window` is too long.")
if step < 1:
raise ValueError("`step` must be at least 1.")
axis = axis % a.ndim
num_windows = (a.shape[axis] - window + step) // step
shape = a.shape[:axis] + (num_windows, window) + a.shape[axis + 1 :]
strides = (
a.strides[:axis]
+ (step * a.strides[axis], a.strides[axis])
+ a.strides[axis + 1 :]
array_module = da if isinstance(a, da.Array) else np
steps = tuple(
slice(None, None, step) if i == axis else slice(None) for i in range(a.ndim)
)
rw = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
if ma.isMaskedArray(a):
mask = ma.getmaskarray(a)
strides = (
mask.strides[:axis]
+ (step * mask.strides[axis], mask.strides[axis])
+ mask.strides[axis + 1 :]
)
rw = ma.array(
rw,
mask=np.lib.stride_tricks.as_strided(mask, shape=shape, strides=strides),

def _rolling_window(array):
return array_module.moveaxis(
array_module.lib.stride_tricks.sliding_window_view(
array,
window_shape=window,
axis=axis,
)[steps],
-1,
axis + 1,
)

rw = _rolling_window(a)
if isinstance(da.utils.meta_from_array(a), np.ma.MaskedArray):
mask = _rolling_window(array_module.ma.getmaskarray(a))
rw = array_module.ma.masked_array(rw, mask)
return rw


Expand Down
Loading