Skip to content

Latest commit

 

History

History
54 lines (45 loc) · 1.62 KB

README.md

File metadata and controls

54 lines (45 loc) · 1.62 KB

RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation

license

Authors: Shuting Wang, Xin Yu, Mang Wang, Weipeng Chen, Yutao Zhu, and Zhicheng Dou

Evaluation

Create Environment

  • GPU: 4 * A100(80G)
  • conda:
conda env create -f richrag.yml

Download dataset & checkpoint

Run evaluation code

  • Evaluation of generation metrics
# evaluate Rouge & Com-Rouge
cd RichRAG
sh scripts/test_rag.sh # you can set the dataset and evaluation type ("golden" for golden sub-aspects or "selfdec" for self-decomposed sub-aspects) in the script.

# evaluate bert-score
cd evaluation
python bert-score-eval.py ../outputs/${output_filename}

Training

Training generative ranker

cd RichRAG
scripts/train_genranker_sft.sh
  • Other parts of the training code is being sorted out

Citation

Please kindly cite our paper if it helps your research:

@misc{RichRAG,
      title={RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation}, 
      author={Shuting Wang and Xin Yu and Mang Wang and Weipeng Chen and Yutao Zhu and Zhicheng Dou},
      year={2024},
      eprint={2406.12566},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2406.12566}, 
}