Authors: Shuting Wang, Xin Yu, Mang Wang, Weipeng Chen, Yutao Zhu, and Zhicheng Dou
- GPU: 4 * A100(80G)
- conda:
conda env create -f richrag.yml
- link of dataset & checkpoint: https://huggingface.co/datasets/ShootingWong/RichRAG-dataset-ckpt
- Evaluation of generation metrics
# evaluate Rouge & Com-Rouge
cd RichRAG
sh scripts/test_rag.sh # you can set the dataset and evaluation type ("golden" for golden sub-aspects or "selfdec" for self-decomposed sub-aspects) in the script.
# evaluate bert-score
cd evaluation
python bert-score-eval.py ../outputs/${output_filename}
cd RichRAG
scripts/train_genranker_sft.sh
- Other parts of the training code is being sorted out
Please kindly cite our paper if it helps your research:
@misc{RichRAG,
title={RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation},
author={Shuting Wang and Xin Yu and Mang Wang and Weipeng Chen and Yutao Zhu and Zhicheng Dou},
year={2024},
eprint={2406.12566},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.12566},
}