Skip to content
forked from hcp4715/R4Psy

R for psychological research (NNU grad course)

License

Notifications You must be signed in to change notification settings

SongshiBai/R4Psy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

R语言在心理学研究中的应用 (R for psychological research)

关于(About)

This is a repo for the coming R course for graduate students, School of Psychology, Nanjing Normal University, Nanjing, China.

Instructor: Prof. Hu Chuan-Peng

Teaching assistants: Yuki; Hejia Sun; Zheng Cai; Songshi Bai; Caiyu Tian

此仓库为南京师范大学心理学研究生课程。

教师:胡传鹏(hcp4715 AT hotmail DOT com)

助教:yuki; 孙禾嘉;蔡镇;柏松石;田彩玉

版权与许可(License)

本仓库中的代码与文字,均由胡传鹏教授与助教团队所创建,采用CC-BY-4.0的版本许可,如需要使用,请引用本仓库网址。

本仓库内容对资料出处均进行详细引用,如果侵权,请随时联系。

Shield: CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.

CC BY 4.0

本Repo的文件夹结构(folder structure of this repo)

root_dir
|
|----chapter_1.pptx   # slides for chapter 1
|----chapter_2.pptx   # slides for chapter 2
|----chapter_3.Rmd    # Rmarkdown for chapter 3
|----chapter_3.html   # html for chapter 3
|----chapter_4.Rmd    # Rmarkdown for chapter 4
|----chapter_4.html   # html for chapter 4
|----chapter_5.Rmd    # Rmarkdown for chapter 5
|----chapter_5.html   # html for chapter 5
|----chapter_6.Rmd    # Rmarkdown for chapter 6
|----chapter_6.html   # html for chapter 6
|----chapter_7.Rmd    # Rmarkdown for chapter 7
|----chapter_7.html   # html for chapter 7
|
|----css/             # folder for Xaringan
|----data/            # folder for data used in the lecture
|     |----- match    # folder for match data
|     |----- penguin  # folder for penguin data
| 
|----libs/            # folder for Xaringan
|
|----output/          # folder for Xaringan output?
|
|----picture/         # folder for picture in html
|     |----- chp3     # folder for pictures in chapter 3
|     |----- chp4     # folder for pictures in chapter 4
|     |----- ...
|
|....

课程大纲 (Syllabus)

第一讲:为什么要学习R(3学时)

1.1 R在心理科学及社会科学中的运用

1.2 R语言使用的示例展示

1.3 课程安排

1.4 如何学好这门课

第二讲:如何开始使用R:(3学时)

2.1 要解决的数据分析问题简介?

2.1 如何安装?

2.2 如何方便使用?Rstudio的安装与界面介绍

第三章:如何导入数据(3学时)

3.1 路径与工作目录

3.2 读取数据

3.3 了解R里的数据 (R语言中的对象)

第四章:如何清理数据一 R语言编程基础(3学时)

4.1 R对象的操控

4.2 逻辑运算

4.3 函数

第五章:如何清理数据二 数据的预处理(3学时)

5.1 数据预处理准备

5.2 数据预处理的基本操作

5.3 数据预处理的进阶操作

第六章:如何探索数据: 描述性统计与数据可视化基础(3学时)

6.1 描述性统计

6.2 ggplot2的基本使用

6.3 探索性数据分析(DataExplorer)

第七章:如何进行基本的数据分析: t-test和anova(3学时)

7.1 语法实现

7.2 分析的流程

第八章:如何进行基本的数据分析: 相关与回归(3学时)

8.1 语法实现

8.2 分析的流程

第九章:如何进行基本的数据分析: 中介分析(3学时)

9.1 语法实现

9.2 分析的流程

第十章:Git、Github与代码的规范化(3学时)

10.1. Git与GitHub

10.2 项目、文件与代码的规范化

第十一章: 如何得到可发表的图像: 数据可视化进阶(3学时)

11.1 ggplot2的图层与面板控制

11.2 ggplot2与其他工具的结合

第十二章:从分析到手稿(3学时)

12.1 papaja工具包的简介及使用

第十三章:基于估计的统计:Effect size与Meta-analysis(3学时)

13.1 Effect size

13.2 Meta-analysis

第十四章:计划样本量:Power analysis (3学时)

14.1 什么是Power

14.2 G*Power中的曲线如何得来?以t-test为例 (模拟)

14.3 如何计划分析方法:以ANOVA为例(模拟)

第十五章:如何让导师/合作者完全重复我的分析?(3 学时,学期结束,无法讲到了)

15.1 软件版本记录

15.2 容器技术与docker的使用

In English

Chapter 1: Why Learn R (3 lessons)

1.1 The use of R in psychological sciences and social sciences

1.2 Sample demonstration of the use of R language

1.3 Course schedule

1.4 How to learn this course well

Chapter 2: How to start using R: (3 lessons)

2.1 Introduction to the data analysis problem to be solved?

2.1 How to install?

2.2 How to facilitate the use of? Introduction to the installation and interface of RStudio

Chapter 3: How to Import Data (3 lessons)

3.1 Path and working directory

3.2 Reading data

3.3 Understanding Data in R (Objects in the R Language)

Chapter 4: How to Clean Up Data I: R Programming Basics (3 lessons)

4.1 Manipulation of R objects

4.2 Logical operations

4.3 Functions

Chapter 5: How to Clean Up Data II: Data Preprocessing (3 lessons)

5.1 Data Preprocessing Preparation

5.2 Basic operations of data preprocessing

5.3 Advanced operations of data preprocessing

Chapter 6: How to Explore Data: Fundamentals of Descriptive Statistics and Data Visualization (3 lessons)

6.1 Descriptive Statistics

6.2 Basic use of ggplot2

6.3 Element control of ggplot2

Chapter 7: How to perform basic data analysis: t-test and anova (3 lessons)

7.1 Syntax implementation

7.2 Flow of analysis

Chapter 8: How to Perform Basic Data Analysis: Correlation and Regression (3 lessons)

8.1 Syntax Implementation

8.2 The flow of analysis

Chapter 9: How to Perform Basic Data Analysis: Mediation Analysis (3 lessons)

9.1 Syntax Implementation

9.2 Flow of analysis

Chapter 10: Are the Results Robust? The effect of using Multiverse comparison method selection on the results (3 lessons)

10.1. Implementation of Multiverse Analysis Methods

10.2 Code integration and normalization

Chapter 11: How to Get Publishable Images: Advanced Data Visualization (3 lessons)

11.1 Layers and Panel Controls for ggplot2

11.2 Combining ggplot2 with other tools

Chapter 12: From Analysis to Manuscript (3 lessons)

12.1 Rmarkdown

12.2 Basic introduction to Latex syntax

12.3 Introduction to the papaja toolkit

Chapter 13: Collaborative Version Control: Git? (3 lessons)

13.1 Version Control and git

13.2 Multi-Person Collaboration and git

Chapter 14: How Can We Help Plan Our Next Study?

14.1 Calculating effect sizes: Meta-analysis

14.2 Planning sample size: Power analysis (simulation)

14.3 Planning analysis methods: Dummy data and analysis codes (simulation)

14.4 Parallel processing

Chapter 15: How do I get my mentor/collaborator to exactly replicate my analysis? (3 lessons)

15.1 Software Version Logging

15.2 Container technology and the use of docker

About

R for psychological research (NNU grad course)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 48.0%
  • JavaScript 45.6%
  • CSS 4.1%
  • TeX 2.0%
  • SCSS 0.3%