forked from microsoft/nni
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add BNN quantization algorithm (microsoft#1832)
- Loading branch information
Showing
3 changed files
with
284 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT license. | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torchvision import datasets, transforms | ||
from nni.compression.torch import BNNQuantizer | ||
|
||
|
||
class VGG_Cifar10(nn.Module): | ||
def __init__(self, num_classes=1000): | ||
super(VGG_Cifar10, self).__init__() | ||
self.features = nn.Sequential( | ||
nn.Conv2d(3, 128, kernel_size=3, padding=1, bias=False), | ||
nn.BatchNorm2d(128, eps=1e-4, momentum=0.1), | ||
nn.Hardtanh(inplace=True), | ||
|
||
nn.Conv2d(128, 128, kernel_size=3, padding=1, bias=False), | ||
nn.MaxPool2d(kernel_size=2, stride=2), | ||
nn.BatchNorm2d(128, eps=1e-4, momentum=0.1), | ||
nn.Hardtanh(inplace=True), | ||
|
||
nn.Conv2d(128, 256, kernel_size=3, padding=1, bias=False), | ||
nn.BatchNorm2d(256, eps=1e-4, momentum=0.1), | ||
nn.Hardtanh(inplace=True), | ||
|
||
|
||
nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=False), | ||
nn.MaxPool2d(kernel_size=2, stride=2), | ||
nn.BatchNorm2d(256, eps=1e-4, momentum=0.1), | ||
nn.Hardtanh(inplace=True), | ||
|
||
|
||
nn.Conv2d(256, 512, kernel_size=3, padding=1, bias=False), | ||
nn.BatchNorm2d(512, eps=1e-4, momentum=0.1), | ||
nn.Hardtanh(inplace=True), | ||
|
||
|
||
nn.Conv2d(512, 512, kernel_size=3, padding=1, bias=False), | ||
nn.MaxPool2d(kernel_size=2, stride=2), | ||
nn.BatchNorm2d(512, eps=1e-4, momentum=0.1), | ||
nn.Hardtanh(inplace=True) | ||
) | ||
|
||
self.classifier = nn.Sequential( | ||
nn.Linear(512 * 4 * 4, 1024, bias=False), | ||
nn.BatchNorm1d(1024), | ||
nn.Hardtanh(inplace=True), | ||
nn.Linear(1024, 1024, bias=False), | ||
nn.BatchNorm1d(1024), | ||
nn.Hardtanh(inplace=True), | ||
nn.Linear(1024, num_classes), # do not quantize output | ||
nn.BatchNorm1d(num_classes, affine=False) | ||
) | ||
|
||
|
||
def forward(self, x): | ||
x = self.features(x) | ||
x = x.view(-1, 512 * 4 * 4) | ||
x = self.classifier(x) | ||
return x | ||
|
||
|
||
def train(model, device, train_loader, optimizer): | ||
model.train() | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
data, target = data.to(device), target.to(device) | ||
optimizer.zero_grad() | ||
output = model(data) | ||
loss = F.cross_entropy(output, target) | ||
loss.backward() | ||
optimizer.step() | ||
for name, param in model.named_parameters(): | ||
if name.endswith('old_weight'): | ||
param = param.clamp(-1, 1) | ||
if batch_idx % 100 == 0: | ||
print('{:2.0f}% Loss {}'.format(100 * batch_idx / len(train_loader), loss.item())) | ||
|
||
|
||
def test(model, device, test_loader): | ||
model.eval() | ||
test_loss = 0 | ||
correct = 0 | ||
with torch.no_grad(): | ||
for data, target in test_loader: | ||
data, target = data.to(device), target.to(device) | ||
output = model(data) | ||
test_loss += F.nll_loss(output, target, reduction='sum').item() | ||
pred = output.argmax(dim=1, keepdim=True) | ||
correct += pred.eq(target.view_as(pred)).sum().item() | ||
test_loss /= len(test_loader.dataset) | ||
acc = 100 * correct / len(test_loader.dataset) | ||
|
||
print('Loss: {} Accuracy: {}%)\n'.format( | ||
test_loss, acc)) | ||
return acc | ||
|
||
def adjust_learning_rate(optimizer, epoch): | ||
update_list = [55, 100, 150, 200, 400, 600] | ||
if epoch in update_list: | ||
for param_group in optimizer.param_groups: | ||
param_group['lr'] = param_group['lr'] * 0.1 | ||
return | ||
|
||
def main(): | ||
torch.manual_seed(0) | ||
device = torch.device('cuda') | ||
train_loader = torch.utils.data.DataLoader( | ||
datasets.CIFAR10('./data.cifar10', train=True, download=True, | ||
transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) | ||
])), | ||
batch_size=64, shuffle=True) | ||
test_loader = torch.utils.data.DataLoader( | ||
datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) | ||
])), | ||
batch_size=200, shuffle=False) | ||
|
||
model = VGG_Cifar10(num_classes=10) | ||
model.to(device) | ||
|
||
configure_list = [{ | ||
'quant_types': ['weight'], | ||
'quant_bits': 1, | ||
'op_types': ['Conv2d', 'Linear'], | ||
'op_names': ['features.3', 'features.7', 'features.10', 'features.14', 'classifier.0', 'classifier.3'] | ||
}, { | ||
'quant_types': ['output'], | ||
'quant_bits': 1, | ||
'op_types': ['Hardtanh'], | ||
'op_names': ['features.6', 'features.9', 'features.13', 'features.16', 'features.20', 'classifier.2', 'classifier.5'] | ||
}] | ||
|
||
quantizer = BNNQuantizer(model, configure_list) | ||
model = quantizer.compress() | ||
|
||
print('=' * 10 + 'train' + '=' * 10) | ||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) | ||
best_top1 = 0 | ||
for epoch in range(400): | ||
print('# Epoch {} #'.format(epoch)) | ||
train(model, device, train_loader, optimizer) | ||
adjust_learning_rate(optimizer, epoch) | ||
top1 = test(model, device, test_loader) | ||
if top1 > best_top1: | ||
best_top1 = top1 | ||
print(best_top1) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters