-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
299 additions
and
0 deletions.
There are no files selected for viewing
299 changes: 299 additions & 0 deletions
299
projects/Math/24/org/apache/commons/math3/optimization/univariate/BrentOptimizer.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,299 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package org.apache.commons.math3.optimization.univariate; | ||
|
||
import org.apache.commons.math3.util.Precision; | ||
import org.apache.commons.math3.util.FastMath; | ||
import org.apache.commons.math3.exception.NumberIsTooSmallException; | ||
import org.apache.commons.math3.exception.NotStrictlyPositiveException; | ||
import org.apache.commons.math3.optimization.ConvergenceChecker; | ||
import org.apache.commons.math3.optimization.GoalType; | ||
|
||
/** | ||
* Implements Richard Brent's algorithm (from his book "Algorithms for | ||
* Minimization without Derivatives", p. 79) for finding minima of real | ||
* univariate functions. This implementation is an adaptation partly | ||
* based on the Python code from SciPy (module "optimize.py" v0.5). | ||
* If the function is defined on some interval {@code (lo, hi)}, then | ||
* this method finds an approximation {@code x} to the point at which | ||
* the function attains its minimum. | ||
* | ||
* @version $Id$ | ||
* @since 2.0 | ||
*/ | ||
public class BrentOptimizer extends BaseAbstractUnivariateOptimizer { | ||
/** | ||
* Golden section. | ||
*/ | ||
private static final double GOLDEN_SECTION = 0.5 * (3 - FastMath.sqrt(5)); | ||
/** | ||
* Minimum relative tolerance. | ||
*/ | ||
private static final double MIN_RELATIVE_TOLERANCE = 2 * FastMath.ulp(1d); | ||
/** | ||
* Relative threshold. | ||
*/ | ||
private final double relativeThreshold; | ||
/** | ||
* Absolute threshold. | ||
*/ | ||
private final double absoluteThreshold; | ||
|
||
/** | ||
* The arguments are used implement the original stopping criterion | ||
* of Brent's algorithm. | ||
* {@code abs} and {@code rel} define a tolerance | ||
* {@code tol = rel |x| + abs}. {@code rel} should be no smaller than | ||
* <em>2 macheps</em> and preferably not much less than <em>sqrt(macheps)</em>, | ||
* where <em>macheps</em> is the relative machine precision. {@code abs} must | ||
* be positive. | ||
* | ||
* @param rel Relative threshold. | ||
* @param abs Absolute threshold. | ||
* @param checker Additional, user-defined, convergence checking | ||
* procedure. | ||
* @throws NotStrictlyPositiveException if {@code abs <= 0}. | ||
* @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. | ||
*/ | ||
public BrentOptimizer(double rel, | ||
double abs, | ||
ConvergenceChecker<UnivariatePointValuePair> checker) { | ||
super(checker); | ||
|
||
if (rel < MIN_RELATIVE_TOLERANCE) { | ||
throw new NumberIsTooSmallException(rel, MIN_RELATIVE_TOLERANCE, true); | ||
} | ||
if (abs <= 0) { | ||
throw new NotStrictlyPositiveException(abs); | ||
} | ||
|
||
relativeThreshold = rel; | ||
absoluteThreshold = abs; | ||
} | ||
|
||
/** | ||
* The arguments are used for implementing the original stopping criterion | ||
* of Brent's algorithm. | ||
* {@code abs} and {@code rel} define a tolerance | ||
* {@code tol = rel |x| + abs}. {@code rel} should be no smaller than | ||
* <em>2 macheps</em> and preferably not much less than <em>sqrt(macheps)</em>, | ||
* where <em>macheps</em> is the relative machine precision. {@code abs} must | ||
* be positive. | ||
* | ||
* @param rel Relative threshold. | ||
* @param abs Absolute threshold. | ||
* @throws NotStrictlyPositiveException if {@code abs <= 0}. | ||
* @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. | ||
*/ | ||
public BrentOptimizer(double rel, | ||
double abs) { | ||
this(rel, abs, null); | ||
} | ||
|
||
/** {@inheritDoc} */ | ||
@Override | ||
protected UnivariatePointValuePair doOptimize() { | ||
final boolean isMinim = getGoalType() == GoalType.MINIMIZE; | ||
final double lo = getMin(); | ||
final double mid = getStartValue(); | ||
final double hi = getMax(); | ||
|
||
// Optional additional convergence criteria. | ||
final ConvergenceChecker<UnivariatePointValuePair> checker | ||
= getConvergenceChecker(); | ||
|
||
double a; | ||
double b; | ||
if (lo < hi) { | ||
a = lo; | ||
b = hi; | ||
} else { | ||
a = hi; | ||
b = lo; | ||
} | ||
|
||
double x = mid; | ||
double v = x; | ||
double w = x; | ||
double d = 0; | ||
double e = 0; | ||
double fx = computeObjectiveValue(x); | ||
if (!isMinim) { | ||
fx = -fx; | ||
} | ||
double fv = fx; | ||
double fw = fx; | ||
|
||
UnivariatePointValuePair previous = null; | ||
UnivariatePointValuePair current | ||
= new UnivariatePointValuePair(x, isMinim ? fx : -fx); | ||
|
||
int iter = 0; | ||
while (true) { | ||
final double m = 0.5 * (a + b); | ||
final double tol1 = relativeThreshold * FastMath.abs(x) + absoluteThreshold; | ||
final double tol2 = 2 * tol1; | ||
|
||
// Default stopping criterion. | ||
final boolean stop = FastMath.abs(x - m) <= tol2 - 0.5 * (b - a); | ||
if (!stop) { | ||
double p = 0; | ||
double q = 0; | ||
double r = 0; | ||
double u = 0; | ||
|
||
if (FastMath.abs(e) > tol1) { // Fit parabola. | ||
r = (x - w) * (fx - fv); | ||
q = (x - v) * (fx - fw); | ||
p = (x - v) * q - (x - w) * r; | ||
q = 2 * (q - r); | ||
|
||
if (q > 0) { | ||
p = -p; | ||
} else { | ||
q = -q; | ||
} | ||
|
||
r = e; | ||
e = d; | ||
|
||
if (p > q * (a - x) && | ||
p < q * (b - x) && | ||
FastMath.abs(p) < FastMath.abs(0.5 * q * r)) { | ||
// Parabolic interpolation step. | ||
d = p / q; | ||
u = x + d; | ||
|
||
// f must not be evaluated too close to a or b. | ||
if (u - a < tol2 || b - u < tol2) { | ||
if (x <= m) { | ||
d = tol1; | ||
} else { | ||
d = -tol1; | ||
} | ||
} | ||
} else { | ||
// Golden section step. | ||
if (x < m) { | ||
e = b - x; | ||
} else { | ||
e = a - x; | ||
} | ||
d = GOLDEN_SECTION * e; | ||
} | ||
} else { | ||
// Golden section step. | ||
if (x < m) { | ||
e = b - x; | ||
} else { | ||
e = a - x; | ||
} | ||
d = GOLDEN_SECTION * e; | ||
} | ||
|
||
// Update by at least "tol1". | ||
if (FastMath.abs(d) < tol1) { | ||
if (d >= 0) { | ||
u = x + tol1; | ||
} else { | ||
u = x - tol1; | ||
} | ||
} else { | ||
u = x + d; | ||
} | ||
|
||
double fu = computeObjectiveValue(u); | ||
if (!isMinim) { | ||
fu = -fu; | ||
} | ||
|
||
// User-defined convergence checker. | ||
previous = current; | ||
current = new UnivariatePointValuePair(u, isMinim ? fu : -fu); | ||
|
||
if (checker != null) { | ||
if (checker.converged(iter, previous, current)) { | ||
return current; | ||
} | ||
} | ||
|
||
// Update a, b, v, w and x. | ||
if (fu <= fx) { | ||
if (u < x) { | ||
b = x; | ||
} else { | ||
a = x; | ||
} | ||
v = w; | ||
fv = fw; | ||
w = x; | ||
fw = fx; | ||
x = u; | ||
fx = fu; | ||
} else { | ||
if (u < x) { | ||
a = u; | ||
} else { | ||
b = u; | ||
} | ||
if (fu <= fw || | ||
Precision.equals(w, x)) { | ||
v = w; | ||
fv = fw; | ||
w = u; | ||
fw = fu; | ||
} else if (fu <= fv || | ||
Precision.equals(v, x) || | ||
Precision.equals(v, w)) { | ||
v = u; | ||
fv = fu; | ||
} | ||
} | ||
} else { // Default termination (Brent's criterion). | ||
return current; | ||
} | ||
++iter; | ||
} | ||
} | ||
|
||
/** | ||
* Selects the best of two points. | ||
* | ||
* @param a Point and value. | ||
* @param b Point and value. | ||
* @param isMinim {@code true} if the selected point must be the one with | ||
* the lowest value. | ||
* @return the best point, or {@code null} if {@code a} and {@code b} are | ||
* both {@code null}. | ||
*/ | ||
private UnivariatePointValuePair best(UnivariatePointValuePair a, | ||
UnivariatePointValuePair b, | ||
boolean isMinim) { | ||
if (a == null) { | ||
return b; | ||
} | ||
if (b == null) { | ||
return a; | ||
} | ||
|
||
if (isMinim) { | ||
return a.getValue() < b.getValue() ? a : b; | ||
} else { | ||
return a.getValue() > b.getValue() ? a : b; | ||
} | ||
} | ||
} |