forked from dbpedia/neural-qa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generator.py
executable file
·352 lines (292 loc) · 14.3 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#!/usr/bin/env python
"""
Neural SPARQL Machines - Generator module
'SPARQL as a Foreign Language' by Tommaso Soru and Edgard Marx et al., SEMANTiCS 2017
https://w3id.org/neural-sparql-machines/soru-marx-semantics2017.html
https://arxiv.org/abs/1708.07624
Version 0.1.0-akaha
"""
import argparse
import collections
import datetime
import json
import logging
import operator
import os
import random
import re
import sys
import traceback
from generator_utils import log_statistics, save_cache, query_dbpedia, strip_brackets, encode, read_template_file , do_replacements
CELEBRITY_LIST = [
'dbo:Royalty',
'<http://dbpedia.org/class/yago/Wikicat21st-centuryActors>',
'<http://dbpedia.org/class/yago/WikicatEnglishMusicians>',
'<http://dbpedia.org/class/yago/Wikicat20th-centuryNovelists>',
'<http://dbpedia.org/class/yago/Honoree110183757>'
]
SPECIAL_CLASSES = {
'dbo:Person': [
'<http://dbpedia.org/class/yago/Wikicat21st-centuryActors>',
'<http://dbpedia.org/class/yago/WikicatEnglishMusicians>',
'<http://dbpedia.org/class/yago/Wikicat20th-centuryNovelists>',
'<http://dbpedia.org/class/yago/Honoree110183757>',
'dbo:LacrossePlayer'
],
'dbo:Athlete': ['dbo:LacrossePlayer'],
'dbo:SportsTeam': ['dboBasketballTeam']
}
EXAMPLES_PER_TEMPLATE = 600
def extract_bindings( data, template ):
matches = list()
for match in data:
matches.append(match)
random.shuffle(matches)
logging.debug('{} matches for {}'.format(len(matches), getattr(template, 'id')))
if len(matches) == 0:
return None
if len(matches) <= EXAMPLES_PER_TEMPLATE:
best_matches = matches
else:
#best_matches = sort_matches(matches, template)[0:EXAMPLES_PER_TEMPLATE]
best_matches = sorted(matches, template)[0:EXAMPLES_PER_TEMPLATE]
bindings = list()
variables = getattr(template, 'variables')
for match in best_matches:
binding = {}
for variable in variables:
resource = match[variable]["value"]
label = match["l" + variable]["value"]
binding[variable] = {'uri': resource, 'label': label}
used_resources.update([resource])
bindings.append(binding)
return bindings
def sort_matches( matches, template ):
variables = getattr(template, 'variables')
get_usages = lambda match : map(lambda variable : used_resources[match[variable]["value"]], variables)
matches_with_usages = map(lambda match : {'usages': get_usages(match), 'match': match}, matches)
sorted_matches_with_usages = sorted(matches_with_usages, key=prioritize_usage)
sorted_matches = map(operator.itemgetter('match'), sorted_matches_with_usages)
return sorted_matches
def prioritize_usage ( match ):
usages = match['usages']
if len(usages) == 1:
return prioritize_single_match(usages[0])
else:
if len(usages) == 2:
return prioritize_couple_match(usages)
else:
return prioritize_triple_match(usages)
def prioritize_single_match( usage ):
highest_priority = 20 >= usage > 10
second_highest_priority = 30 >= usage > 20
third_highest_priority = 10 >= usage > 0
fourth_highest_priority = 50 >= usage > 30
fifth_highest_priority = usage == 0
if highest_priority:
return 0
if second_highest_priority:
return 1
if third_highest_priority:
return 2
if fourth_highest_priority:
return 3
if fifth_highest_priority:
return 4
return usage
def prioritize_couple_match( usages ):
between_zero_and_upper_limit = lambda value : 0 < value < 30
usage, other_usage = usages
highest_priority = all(map(between_zero_and_upper_limit, usages))
second_highest_priority = any(map(between_zero_and_upper_limit, usages))
third_highest_priority = usage == 0 and other_usage == 0
if highest_priority:
return 0
if second_highest_priority:
return 1
if third_highest_priority:
return 2
return sum(usages)
def prioritize_triple_match( usages ):
between_zero_and_upper_limit = lambda value : 0 < value < 30
highest_priority = all(map(between_zero_and_upper_limit, usages))
second_highest_priority = filter(between_zero_and_upper_limit, usages) >= 2
third_highest_priority = any(map(between_zero_and_upper_limit, usages))
if highest_priority:
return 0
if second_highest_priority:
return 1
if third_highest_priority:
return 2
return sum(usages)
def build_dataset_pair(binding, template, flag):
print('\n build_dataset_pair(binding, template):')
english = getattr(template, 'question')
sparql = getattr(template, 'query')
for variable in binding:
uri = binding[variable]['uri']
print(" uri = binding[variable]['uri']")
print('\n building dataset, the URI: ', uri)
label = do_replacements(uri)
'''
if flag: # this is changed to fit the transformer model
label = binding[variable]['label']
else:
label = do_replacements(uri) '''
placeholder = '<{}>'.format(str.upper(variable))
if placeholder in english and label is not None:
print('\n building dataset, the label: ', label)
english = english.replace(placeholder, label )
'''
if flag: # this is changed to fit the transformer model
english = english.replace(placeholder, label )
else:
english = english.replace(placeholder, strip_brackets(label)) '''
print('\n building dataset, the strip_brackets(label): ', strip_brackets(label))
print('\n building dataset, the placeholder: ', placeholder)
print('\n building dataset, the english: ', english)
if placeholder in sparql and uri is not None:
sparql = sparql.replace(placeholder, uri)
sparql = encode(sparql)
dataset_pair = {'english': english, 'sparql': sparql}
return dataset_pair
def generate_dataset(templates, output_dir, file_mode, flag):
cache = dict()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
it = 0
with open(output_dir + '/data.en', file_mode) as english_questions, open(output_dir + '/data.sparql', file_mode) as sparql_queries:
for template in templates:
it = it + 1
print( "for {}th template".format(it) )
try:
results = get_results_of_generator_query(cache, template)
print(it, ' ---> ', results, '\n' )
bindings = extract_bindings(results["results"]["bindings"], template)
print( bindings)
if bindings is None:
id_or_question = getattr(template, 'id') or getattr(template, 'question')
logging.debug("no data for {}".format(id_or_question))
not_instanced_templates.update([id_or_question])
continue
for binding in bindings:
dataset_pair = build_dataset_pair(binding, template, flag )
print( "\n dataset_pair---> ", dataset_pair)
if (dataset_pair):
dataset_pair['english'] = " ".join(dataset_pair['english'].split())
english_questions.write("{}\n".format(dataset_pair['english']))
dataset_pair['sparql'] = re.sub("\s\s+" , " " , dataset_pair['sparql'])
a = re.search('(.*)brack_open',dataset_pair['sparql']);
b = re.search('brack_open(.*)brack_close',dataset_pair['sparql']);
c = re.search('brack_close(.*)',dataset_pair['sparql']);
# print a.group(1),b.group(1)
a = a.group(1)
b = b.group(1)
c = c.group(1)
b = b.replace(' attr_open ','(')
b = b.replace(' attr_close',')')
dataset_pair['sparql'] = a + ' brack_open ' + b + ' brack_close ' + c
dataset_pair['sparql'] = " ".join(dataset_pair['sparql'].split())
# print
# print "lol", dataset_pair['sparql']
sparql_queries.write("{}\n".format(dataset_pair['sparql']))
except:
exception = traceback.format_exc()
logging.error('template {} caused exception {}'.format(getattr(template, 'id'), exception))
logging.info('1. fix problem\n2. remove templates until the exception template in the template file\n3. restart with `--continue` parameter')
raise Exception()
def get_results_of_generator_query( cache, template ):
generator_query = getattr(template, 'generator_query')
first_attempt = lambda template : prepare_generator_query(template)
second_attempt = lambda template : prepare_generator_query(template, do_special_class_replacement=False)
third_attempt = lambda template : prepare_generator_query(template, add_type_requirements=False)
for attempt, prepare_query in enumerate([first_attempt, second_attempt, third_attempt], start=1):
query = prepare_query(template)
if query in cache:
results = cache[query]
break
logging.debug('{}. attempt generator_query: {}'.format(attempt, query))
results = query_dbpedia(query)
sufficient_examples = len(results["results"]["bindings"]) >= EXAMPLES_PER_TEMPLATE/3
if sufficient_examples:
cache[query] = results
break
return results
LABEL_REPLACEMENT = " (str(?lab{variable}) as ?l{variable}) where {{ ?{variable} rdfs:label ?lab{variable} . FILTER(lang(?lab{variable}) = 'en') . "
CLASS_REPLACEMENT = " where {{ ?{variable} a {ontology_class} . "
CLASSES_REPLACEMENT = " where {{ ?{variable} a ?t . VALUES (?t) {{ {classes} }} . "
SUBCLASS_REPLACEMENT = " where {{ ?{variable} rdfs:subClassOf {ontology_class} . "
def variable_is_subclass ( query, variable ):
predicate_pattern = r'\s+?(rdf:type|a)\s+?\?' + variable
predicate_match = re.search(predicate_pattern, query)
return bool(predicate_match)
def add_requirement( query, where_replacement ):
return query.replace(" where { ", where_replacement)
def prepare_generator_query( template, add_type_requirements=True, do_special_class_replacement=True):
generator_query = getattr(template, 'generator_query')
target_classes = getattr(template, 'target_classes')
variables = getattr(template, 'variables')
for i, variable in enumerate(variables):
generator_query = add_requirement(generator_query, LABEL_REPLACEMENT.format(variable=variable))
variable_has_a_type = len(target_classes) > i and target_classes[i]
if variable_has_a_type and add_type_requirements:
normalized_target_class = normalize(target_classes[i])
if variable_is_subclass(generator_query, variable):
generator_query = add_requirement(generator_query, SUBCLASS_REPLACEMENT.format(variable=variable, ontology_class=normalized_target_class))
else:
if normalized_target_class in SPECIAL_CLASSES and do_special_class_replacement:
classes = ' '.join(map(lambda c : '({})'.format(c), SPECIAL_CLASSES[normalized_target_class]))
generator_query = add_requirement(generator_query, CLASSES_REPLACEMENT.format(variable=variable,classes=classes))
else:
ontology_class = normalized_target_class
generator_query = add_requirement(generator_query, CLASS_REPLACEMENT.format(variable=variable, ontology_class=ontology_class))
return generator_query
def normalize (ontology_class):
if str.startswith(ontology_class, 'http://dbpedia.org/ontology/'):
return str.replace(ontology_class, 'http://dbpedia.org/ontology/', 'dbo:')
if str.startswith(ontology_class, 'http'):
return '<{}>'.format(ontology_class)
return ontology_class
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--continue', dest='continue_generation', action='store_true', help='Continue after exception')
parser.add_argument('--transformer', type=bool, default=False )
requiredNamed = parser.add_argument_group('required named arguments')
requiredNamed.add_argument('--templates', dest='templates', metavar='templateFile', help='templates', required=True)
requiredNamed.add_argument('--output', dest='output', metavar='outputDirectory', help='dataset directory', required=True)
args = parser.parse_args()
flag = args.transformer
template_file = args.templates
output_dir = args.output
use_resources_dump = args.continue_generation
# print use_resources_dump => False
time = datetime.datetime.today()
logging.basicConfig(filename='{}/generator_{:%Y-%m-%d-%H-%M}.log'.format(output_dir, time), level=logging.DEBUG)
resource_dump_file = output_dir + '/resource_dump.json'
resource_dump_exists = os.path.exists(resource_dump_file)
# print resource_dump_file, resource_dump_exists => data/place_v1/resource_dump.json False
if (resource_dump_exists and not use_resources_dump):
warning_message = 'Warning: The file {} exists which indicates an error. Remove file or continue generation after fixing with --continue'.format(
resource_dump_file)
#print warning_message
sys.exit(1)
# reload(sys) to set default encoding
#reload(sys)
#sys.setdefaultencoding("utf-8")
import importlib,sys
importlib.reload(sys)
not_instanced_templates = collections.Counter()
used_resources = collections.Counter(json.loads(open(resource_dump_file).read())) if use_resources_dump else collections.Counter()
file_mode = 'a' if use_resources_dump else 'w'
templates = read_template_file(template_file)
print(len(templates))
try:
generate_dataset(templates, output_dir, file_mode, flag )
# print "lol"
except:
#print 'exception occured, look for error in log file'
save_cache(resource_dump_file, used_resources)
else:
save_cache('{}/used_resources_{:%Y-%m-%d-%H-%M}.json'.format(output_dir, time), used_resources)
finally:
log_statistics(used_resources, SPECIAL_CLASSES, not_instanced_templates)