本项目包括:时空领域历年顶会/顶刊论文,相关数据集与时空领域知名专家学者信息。
This project includes: papers of the top conferences/journals in the field of Spatio-Temporal domain, relevant data sets and information of well-known experts and scholars in the field of Spatio-Temporal domain.
Contributions are always welcome! Make an individual pull request for each suggestion. Please follow the specification:contribute.
[1] Urban Computing: Concepts, Methodologies, and Applications. ACM Transactions on Intelligent Systems and Technology 2014. paper
YU ZHENG, LICIA CAPRA, OURI WOLFSON, HAI YANG
[2] Deep Learning for Spatio-Temporal Data Mining: A Survey. IEEE Transactions on Knowledge and Data Engineering(TKDE) 2020. paper
Senzhang Wang, Jiannong Cao, Fellow, Philip S. Yu
[3] A Survey on Modern Deep Neural Network for Traffic Prediction: Trends, Methods and Challenges. IEEE Transactions on Knowledge and Data Engineering(TKDE) 2020. paper
David Alexander Tedjopurnomo, Zhifeng Bao, Baihua Zheng, Farhana Murtaza Choudhury, Kai Qin
[4] How to Build a Graph-Based Deep Learning Architecture in Traffic Domain: A Survey. arXiv 2020. paper
Jiexia Ye, Juanjuan Zhao, Kejiang Ye, Chengzhong Xu
本节为交通预测主题相关文章,即文中未指明特定研究主题(如速度/流量预测等),且实验部分也使用多类数据集验证的文章。
2020
[1] Spatio-Temporal Graph Structure Learning for Traffic Forecasting. AAAI 2020. note
Q Zhang, J Chang, G Meng, S Xiang, C Pan
[2] GMAN: A Graph Multi-Attention Network for Traffic Prediction AAAI 2020. note, github
[3] Dynamic Graph Convolution Network for Traffic Forecasting Based on Latent Network of Laplace Matrix Estimation. IEEE Transactions on Intelligent Transportation Systems(TITS) 2020. note, paper
K Guo, Y Hu, Z Qian, Y Sun, J Gao
2020
[1] **[Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional Neural Networks](./papers/2020/TKDD/MGSTC/Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional Neural Networks)** TKDD 2020. [note](./papers/2020/TKDD/MGSTC/note.md).C Chen, K Li, SG Teo, X Zou, K Li, Z Zeng
[2] [AutoST: Efficient Neural Architecture Search for Spatio-Temporal Prediction](./papers/2020/KDD/AutoST/AutoST Efficient Neural Architecture Search for Spatio-Temporal Prediction) SIGKDD 2020. note.
Models | Modules | Architecture | Highlights |
---|---|---|---|
AutoST |
[3] Physical-Virtual Collaboration Modeling for Intra-and Inter-Station Metro Ridership Prediction TITS 2020. note. code.
Models | Modules | Architecture | Highlights |
---|---|---|---|
PVCGN |
[4] [Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction](./papers/2020/KDD/AutoST/AutoST Efficient Neural Architecture Search for Spatio-Temporal Prediction) TITS 2020. note. code.
Models | Modules | Architecture | Highlights |
---|---|---|---|
ATFM |
[5] Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting CIKM 2020. note.
Models | Modules | Architecture | Highlights |
---|---|---|---|
STCGA |
[6] DeepSTD: Mining Spatio-Temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction TITS 2020. note.
Models | Modules | Architecture | Highlights |
---|---|---|---|
DeepSTD |
[7] Predicting Citywide Crowd Flows in Irregular Regions Using Multi-View Graph Convolutional Networks TKDE 2020. note.
Models | Modules | Architecture | Highlights |
---|---|---|---|
MVGCN |
J Sun, J Zhang, Q Li, X Yi, Y Liang
[8] Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting. AAAI 2020. note, paper, github
2019
[1] **[Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning](./papers/2019/TKDE/MDL/MDL)** TKDE 2019. [note](./papers/2019/TKDE/MDL/note.md).Models | Modules | Architecture | Highlights |
---|---|---|---|
MDL |
[2] UrbanFM: Inferring Fine-Grained Urban Flows SIGKDD 2019. note. code
Models | Modules | Architecture | Highlights |
---|---|---|---|
UrbanFM |
Y Liang, K Ouyang, L Jing, S Ruan
[3] Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting AAAI 2019. note, github
Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, Huaiyu Wan
2018
[1] **[Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting.](./papers/2018/IJCAI/STGCN)** IJCAI 2018. [note](./papers/2018/IJCAI/STGCN/note.md), [github](https://github.com/VeritasYin/STGCN_IJCAI-18).Models | Modules | Architecture | Highlights |
---|---|---|---|
STGCN |
Bing Yu, Haoteng Yin, Zhanxing Zhu
Other years
[1] Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction AAAI 2016. note.
Models | Modules | Architecture | Highlights |
---|---|---|---|
ST-ResNet |
[2] Diffusion Convolutional Recurrent Neural Network*: Data-*Driven Traffic Forecasting ICLR 2017. note, github.
Models | Modules | Architecture | Highlights |
---|---|---|---|
DCRNN |
[1] Taxi Demand Prediction Using Parallel Multi-Task Learning Model. TITS 2020. note, paper
Chizhan Zhang, Fenghua Zhu, Xiao Wang, Leilei Sun, Haina Tang, Yisheng Lv
[2] Traffic Demand Prediction Based on Dynamic Transition Convolutional Neural Network. TITS 2020. note, paper
Bowen Du, Xiao Hu, Leilei Sun, Junming Liu, Yanan Qiao, Weifeng Lv
2019
[1] Origin-Destination Matrix Prediction via Graph Convolution: a New Perspective of Passenger Demand Modeling. KDD 2019. note, paper
Yuandong Wang, Hongzhi Yin, Hongxu Chen, Tianyu Wo, Jie Xu, Kai Zheng
[2] STG2Seq: Spatial-temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting. IJCAI 2019.note, paper
Lei Bai, Lina Yao , Salil.S Kanhere, Xianzhi Wang, Quan.Z Sheng
2018
[1] Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction. AAAI 2018. note, paper
Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, Zhenhui Li
[1] HetETA: Heterogeneous Information Network Embedding for Estimating Time of Arrival. KDD 2020. note, paper, github
Huiting Hong, Yucheng Lin, Xiaoqing Yang, Zang Li, Kun Fu, Zheng Wang, Xiaohu Qie, Jieping Ye
[2] CompactETA: A Fast Inference System for Travel Time Prediction. KDD 2020. note, paper
Kun Fu, Fanlin Meng, Jieping Ye, Zheng Wang
2019
[1] Spatiotemporal Multi-Graph Convolution Network for Ride-hailing Demand Forecasting. AAAI 2019. note, paper.
Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, Yan Liu
2018
2019
[1] Graph WaveNet for Deep Spatial-Temporal Graph Modeling. IJCAI 2019. note. paper, github
Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Chengqi Zhang
[1] GAIA Open Dataset: link
[2] 智慧足迹: link
[1] UK traffic flow datasets: link
[2] Illinois traffic flow datasets: link
[3] PeMS: link, Baidu Netdisk password:jutw | PeMS Guide
[1] Chengdu: link
[2] Xian: link
[1] Weather and events data: link
[2] Weather and climate data: link
[3] NSW POI data: link
[4] Road network data: link
[5] NYC OpenData: link
[6] METR-LA: link, Baidu Netdisk password:xsz5
[7] TaxiBJ: link, Baidu Netdisk password:sg4n
[8] BikeNYC: link, Baidu Netdisk password:lmwj
[9] NYC-Taxi: link, Baidu Netdisk password:022y
[10] NYC-Bike: link
[11] San Francisco taxi: link
[12] Chicago bike: link
[13] BikeDC: link
(排名不分先后)
[1] Yu Zheng: link
[2] Yanhua Li: link
[3] Xun Zhou: link
[4] YaGuang Li: link
[5] Zhenhui Jessie Li: link
[6] David S. Rosenblum: link
[7] Huaiyu Wan: link
[8] Junbo Zhang: link
[9] Shining Xiang:link
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。