Skip to content

Commit

Permalink
[Doc] Prepare v0.5.3 release (#351)
Browse files Browse the repository at this point in the history
  • Loading branch information
cenyk1230 authored Jun 1, 2022
1 parent 0b4f1d3 commit 398f931
Show file tree
Hide file tree
Showing 4 changed files with 10 additions and 5 deletions.
6 changes: 4 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,20 +21,22 @@ We summarize the contributions of CogDL as follows:

## ❗ News

- The new **v0.5.3 release** supports mixed-precision training by setting \textit{fp16=True} and provides a basic [example](https://github.com/THUDM/cogdl/blob/master/examples/jittor/gcn.py) written by [Jittor](https://github.com/Jittor/jittor). It also updates the tutorial in the document, fixes downloading links of some datasets, and fixes potential bugs of operators.

- The new **v0.5.2 release** adds a GNN example for ogbn-products and updates geom datasets. It also fixes some potential bugs including setting devices, using cpu for inference, etc.

- The new **v0.5.1 release** adds fast operators including SpMM (cpu version) and scatter_max (cuda version). It also adds lots of datasets for node classification which can be found in [this link](./cogdl/datasets/rd2cd_data.py). 🎉

- The new **v0.5.0 release** designs and implements a unified training loop for GNN. It introduces `DataWrapper` to help prepare the training/validation/test data and `ModelWrapper` to define the training/validation/test steps. 🎉

- The new **v0.4.1 release** adds the implementation of Deep GNNs and the recommendation task. It also supports new pipelines for generating embeddings and recommendation. Welcome to join our tutorial on KDD 2021 at 10:30 am - 12:00 am, Aug. 14th (Singapore Time). More details can be found in https://kdd2021graph.github.io/. 🎉

<details>
<summary>
News History
</summary>
<br/>

- The new **v0.4.1 release** adds the implementation of Deep GNNs and the recommendation task. It also supports new pipelines for generating embeddings and recommendation. Welcome to join our tutorial on KDD 2021 at 10:30 am - 12:00 am, Aug. 14th (Singapore Time). More details can be found in https://kdd2021graph.github.io/. 🎉

- The new **v0.4.0 release** refactors the data storage (from `Data` to `Graph`) and provides more fast operators to speed up GNN training. It also includes many self-supervised learning methods on graphs. BTW, we are glad to announce that we will give a tutorial on KDD 2021 in August. Please see [this link](https://kdd2021graph.github.io/) for more details. 🎉

- CogDL supports GNN models with Mixture of Experts (MoE). You can install [FastMoE](https://github.com/laekov/fastmoe) and try **[MoE GCN](./cogdl/models/nn/moe_gcn.py)** in CogDL now!
Expand Down
6 changes: 4 additions & 2 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,20 +21,22 @@ CogDL的特性包括:

## ❗ 最新

- 最新的 **v0.5.3 release** 支持混合精度(fp16)训练,提供了[Jittor](https://github.com/Jittor/jittor)的初步支持(见[example](https://github.com/THUDM/cogdl/blob/master/examples/jittor/gcn.py))。这个版本更新了文档中的使用教程,修复了一部分数据集的下载链接,修复了某些算子在不同环境下可能的问题。

- 最新的 **v0.5.2 release** 给ogbn-products数据集添加了GNN样例,更新了geom数据集。这个版本同时修复了一些潜在的问题,包括设置不同device,使用cpu进行预测等。

- 最新的 **v0.5.1 release** 添加了一些高效的算子,包括cpu版本的SpMM和cuda版本的scatter_max。这个版本同时增加了很多用于节点分类的[数据集](./cogdl/datasets/rd2cd_data.py)。 🎉

- 最新的 **v0.5.0 release** 为图神经网络的训练设计了一套统一的流程. 这个版本去除了原先的`Task`类,引入了`DataWrapper`来准备training/validation/test过程中所需的数据,引入了`ModelWrapper`来定义模型training/validation/test的步骤. 🎉

- 最新的 **v0.4.1 release** 增加了深层GNN的实现和推荐任务。这个版本同时提供了新的一些pipeline用于直接获取图表示和搭建推荐应用。欢迎大家参加我们在KDD 2021上的tutorial,时间是8月14号上午10:30 - 12:00(北京时间)。 更多的内容可以查看 https://kdd2021graph.github.io/. 🎉

<details>
<summary>
历史
</summary>
<br/>

- 最新的 **v0.4.1 release** 增加了深层GNN的实现和推荐任务。这个版本同时提供了新的一些pipeline用于直接获取图表示和搭建推荐应用。欢迎大家参加我们在KDD 2021上的tutorial,时间是8月14号上午10:30 - 12:00(北京时间)。 更多的内容可以查看 https://kdd2021graph.github.io/. 🎉

- 最新的 **v0.4.0版本** 重构了底层的数据存储(从`Data`类变为`Graph`类),并且提供了更多快速的算子来加速图神经网络的训练。这个版本还包含了很多图自监督学习的算法。同时,我们很高兴地宣布我们将在8月份的KDD 2021会议上给一个CogDL相关的tutorial。具体信息请参见[这个链接](https://kdd2021graph.github.io/). 🎉

- CogDL支持图神经网络模型使用混合专家模块(Mixture of Experts, MoE)。 你可以安装[FastMoE](https://github.com/laekov/fastmoe)然后在CogDL中尝试 **[MoE GCN](./cogdl/models/nn/moe_gcn.py)** 模型!
Expand Down
2 changes: 1 addition & 1 deletion cogdl/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
__version__ = "0.5.2"
__version__ = "0.5.3"

from .experiments import experiment
from .pipelines import pipeline
1 change: 1 addition & 0 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ We summarize the contributions of CogDL as follows:
❗ News
------------

- The new **v0.5.3 release** supports mixed-precision training by setting \textit{fp16=True} and provides a basic [example](https://github.com/THUDM/cogdl/blob/master/examples/jittor/gcn.py) written by [Jittor](https://github.com/Jittor/jittor). It also updates the tutorial in the document, fixes downloading links of some datasets, and fixes potential bugs of operators.
- The new **v0.5.2 release** adds a GNN example for ogbn-products and updates geom datasets. It also fixes some potential bugs including setting devices, using cpu for inference, etc.
- The new **v0.5.1 release** adds fast operators including SpMM (cpu version) and scatter_max (cuda version). It also adds lots of datasets for node classification. 🎉
- The new **v0.5.0 release** designs and implements a unified training loop for GNN. It introduces `DataWrapper` to help prepare the training/validation/test data and `ModelWrapper` to define the training/validation/test steps.
Expand Down

0 comments on commit 398f931

Please sign in to comment.