Generate Child from people image with Keras Tensorflow with Simple autoencoder predictor
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 64, 64, 3) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 64, 64, 64) 1792
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 32, 32, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 32, 32, 64) 36928
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 16, 16, 64) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 16, 16, 128) 73856
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 8, 8, 128) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 8, 8, 256) 295168
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 4, 4, 256) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 4, 4, 512) 1180160
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 2, 2, 512) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 2, 2, 1024) 4719616
_________________________________________________________________
dropout_1 (Dropout) (None, 2, 2, 1024) 0
_________________________________________________________________
up_sampling2d_1 (UpSampling2 (None, 4, 4, 1024) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 4, 4, 512) 4719104
_________________________________________________________________
up_sampling2d_2 (UpSampling2 (None, 8, 8, 512) 0
_________________________________________________________________
conv2d_8 (Conv2D) (None, 8, 8, 256) 1179904
_________________________________________________________________
up_sampling2d_3 (UpSampling2 (None, 16, 16, 256) 0
_________________________________________________________________
conv2d_9 (Conv2D) (None, 16, 16, 128) 295040
_________________________________________________________________
up_sampling2d_4 (UpSampling2 (None, 32, 32, 128) 0
_________________________________________________________________
conv2d_10 (Conv2D) (None, 32, 32, 64) 73792
_________________________________________________________________
up_sampling2d_5 (UpSampling2 (None, 64, 64, 64) 0
_________________________________________________________________
conv2d_11 (Conv2D) (None, 64, 64, 3) 3075
=================================================================
Total params: 12,578,435
Trainable params: 12,578,435
Non-trainable params: 0
- modify data_loader.py from https://github.com/eriklindernoren/Keras-GAN
- Python
- Dataset From http://www.kinfacew.com/
pip install -r requirements.txt
python autoencoder.py