Skip to content

Commit

Permalink
[🚀 Ready to be merged] Added support for Jais models (vllm-project#3183)
Browse files Browse the repository at this point in the history
  • Loading branch information
grandiose-pizza authored Mar 21, 2024
1 parent 55ab0e6 commit 0c55470
Show file tree
Hide file tree
Showing 8 changed files with 596 additions and 3 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)
- Jais (`core42/jais-13b`, `core42/jais-13b-chat`, `core42/jais-30b-v3`, `core42/jais-30b-chat-v3`, etc.)
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.)
Expand Down
6 changes: 5 additions & 1 deletion docs/source/models/supported_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,11 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`InternLM2ForCausalLM`
- InternLM2
- :code:`internlm/internlm2-7b`, :code:`internlm/internlm2-chat-7b`, etc.
-
-
* - :code:`JAISLMHeadModel`
- Jais
- :code:`core42/jais-13b`, :code:`core42/jais-13b-chat`, :code:`core42/jais-30b-v3`, :code:`core42/jais-30b-chat-v3`, etc.
-
* - :code:`LlamaForCausalLM`
- LLaMA, LLaMA-2, Vicuna, Alpaca, Yi
- :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc.
Expand Down
1 change: 1 addition & 0 deletions vllm/model_executor/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
"GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"),
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
"InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"),
"JAISLMHeadModel": ("jais", "JAISLMHeadModel"),
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
# For decapoda-research/llama-*
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
Expand Down
3 changes: 1 addition & 2 deletions vllm/model_executor/models/gpt2.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,8 +242,7 @@ def sample(
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head_weight, logits,
sampling_metadata)
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens

def load_weights(self,
Expand Down
351 changes: 351 additions & 0 deletions vllm/model_executor/models/jais.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,351 @@
# coding=utf-8
# Adapted from
# https://huggingface.co/core42/jais-30b-chat-v3/blob/main/modeling_jais.py
# Copyright 2023 The vLLM team.
# Copyright 2023 the Jais authors and HuggingFace Inc. team. All rights
# reserved.
# Copyright 2023 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Jais model compatible with HuggingFace weights."""

import math
from typing import List, Optional, Tuple

import torch
from torch import nn
from vllm.transformers_utils.configs import JAISConfig

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention import Attention
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, )
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size,
get_tensor_model_parallel_rank,
)
from vllm.model_executor.weight_utils import (
default_weight_loader,
hf_model_weights_iterator,
)
from vllm.sequence import SamplerOutput
from vllm.model_executor.sampling_metadata import SamplingMetadata

KVCache = Tuple[torch.Tensor, torch.Tensor]


class SwiGLUActivation(nn.Module):

def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
return x1 * nn.functional.silu(x2)


def _get_alibi_slopes(n):

def get_slopes_power_of_2(n):
start = 2**(-(2**-(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]

if math.log2(n).is_integer():
return get_slopes_power_of_2(n)
else:
closest_power_of_2 = 2**math.floor(math.log2(n))
return (get_slopes_power_of_2(closest_power_of_2) + _get_alibi_slopes(
2 * closest_power_of_2)[0::2][:n - closest_power_of_2])


class JAISAttention(nn.Module):

def __init__(
self,
config: JAISConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.hidden_size = config.hidden_size
total_num_heads = config.num_attention_heads
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = self.hidden_size // total_num_heads
if hasattr(config, "scale_qk_dot_by_d"):
config.mup_scale_qk_dot_by_d = config.scale_qk_dot_by_d
self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5
self.scale = self.head_dim**-self.attn_scale_power

self.c_attn = QKVParallelLinear(
self.hidden_size,
self.head_dim,
total_num_heads,
bias=True,
linear_method=linear_method,
)
self.c_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
linear_method=linear_method,
)

tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = _get_alibi_slopes(total_num_heads)
alibi_slopes = alibi_slopes[head_start:head_end]
self.attn = Attention(
self.num_heads,
self.head_dim,
scale=self.scale,
alibi_slopes=alibi_slopes,
)

def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
key_cache, value_cache = kv_cache
attn_output = self.attn(q, k, v, key_cache, value_cache,
input_metadata)
attn_output, _ = self.c_proj(attn_output)
return attn_output


class JAISMLP(nn.Module):

def __init__(
self,
intermediate_size: int,
config: JAISConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
hidden_size = config.hidden_size
self.swiglu = config.activation_function == "swiglu"
self.c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
linear_method=linear_method,
)
self.c_fc2 = (ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
linear_method=linear_method,
) if self.swiglu else None)
self.c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
linear_method=linear_method,
)

self.act = SwiGLUActivation()

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.swiglu:
hidden_states2, _ = self.c_fc2(hidden_states)
hidden_states, _ = self.c_fc(hidden_states)
hidden_states = (self.act(hidden_states, hidden_states2)
if self.swiglu else self.act(hidden_states))
hidden_states, _ = self.c_proj(hidden_states)
return hidden_states


class JAISBlock(nn.Module):

def __init__(
self,
config: JAISConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
hidden_size = config.hidden_size
inner_dim = (config.n_inner if config.n_inner is not None else 4 *
hidden_size)

self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = JAISAttention(config, linear_method)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = JAISMLP(inner_dim, config, linear_method)

def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
# residual connection
hidden_states = attn_output + residual

residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
return hidden_states


class JAISModel(nn.Module):

def __init__(
self,
config: JAISConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
assert not config.add_cross_attention
assert not config.scale_attn_by_inverse_layer_idx
assert not config.reorder_and_upcast_attn
self.embed_dim = config.hidden_size
self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
self.wpe = (nn.Embedding(config.max_position_embeddings,
self.embed_dim)
if config.position_embedding_type != "alibi" else None)
if hasattr(config, "embeddings_scale"):
self.embeddings_scale = config.embeddings_scale
else:
self.embeddings_scale = config.mup_embeddings_scale
self.h = nn.ModuleList([
JAISBlock(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
inputs_embeds = self.wte(input_ids)
if self.wpe is not None:
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
else:
hidden_states = inputs_embeds
hidden_states *= torch.tensor(float(self.embeddings_scale),
dtype=hidden_states.dtype)

for i in range(len(self.h)):
layer = self.h[i]
hidden_states = layer(hidden_states, kv_caches[i], input_metadata)

hidden_states = self.ln_f(hidden_states)
return hidden_states


class JAISLMHeadModel(nn.Module):

def __init__(
self,
config: JAISConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.linear_method = linear_method
self.transformer = JAISModel(config, linear_method)
self.lm_head_weight = self.transformer.wte.weight
if hasattr(config, "width_scale"):
self.output_logits_scale = config.width_scale
else:
self.output_logits_scale = (config.mup_output_alpha *
config.mup_width_scale)
self.logits_processor = LogitsProcessor(vocab_size=config.vocab_size,
scale=self.output_logits_scale)
self.sampler = Sampler()

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata)
return hidden_states

def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head_weight, hidden_states,
sampling_metadata)
return logits

def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens

def load_weights(
self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None,
):
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "lm_head.weight" in name:
# GPT-2 ties the weights of the embedding layer and the final
# linear layer.
continue
if ".attn.bias" in name or ".attn.masked_bias" in name:
# Skip attention mask.
# NOTE: "c_attn.bias" should not be skipped.
continue
if "relative_pe" in name:
continue
if not name.startswith("transformer."):
name = "transformer." + name
param = params_dict[name]
# The HF's GPT-2 implementation uses Conv1D instead of Linear.
# Because of this, we need to transpose the weights.
# Note(zhuohan): the logic below might break quantized models.
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
if conv1d_weight_name not in name:
continue
if not name.endswith(".weight"):
continue
loaded_weight = loaded_weight.t()
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
1 change: 1 addition & 0 deletions vllm/transformers_utils/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
"starcoder2": Starcoder2Config,
"jais": JAISConfig,
}


Expand Down
Loading

0 comments on commit 0c55470

Please sign in to comment.