Skip to content

Commit

Permalink
[HUDI-3959] Rename class name for spark rdd reader (apache#5409)
Browse files Browse the repository at this point in the history
Co-authored-by: Y Ethan Guo <ethan.guoyihua@gmail.com>
  • Loading branch information
2 people authored and voonhous committed Oct 7, 2022
1 parent c1e5daf commit f3f5ab5
Show file tree
Hide file tree
Showing 17 changed files with 365 additions and 238 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@

package org.apache.hudi.cli.functional;

import org.apache.hudi.client.HoodieReadClient;
import org.apache.hudi.client.SparkRDDReadClient;
import org.apache.hudi.client.SparkRDDWriteClient;
import org.apache.hudi.client.common.HoodieSparkEngineContext;
import org.apache.hudi.common.table.view.FileSystemViewStorageConfig;
Expand Down Expand Up @@ -107,7 +107,7 @@ public synchronized void runBeforeEach() {
if (!initialized) {
SparkConf sparkConf = conf();
SparkRDDWriteClient.registerClasses(sparkConf);
HoodieReadClient.addHoodieSupport(sparkConf);
SparkRDDReadClient.addHoodieSupport(sparkConf);
spark = SparkSession.builder().config(sparkConf).getOrCreate();
sqlContext = spark.sqlContext();
jsc = new JavaSparkContext(spark.sparkContext());
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,8 @@
public enum CompactionTriggerStrategy {
// trigger compaction when reach N delta commits
NUM_COMMITS,
// trigger compaction when reach N delta commits since last compaction request
NUM_COMMITS_AFTER_LAST_REQUEST,
// trigger compaction when time elapsed > N seconds since last compaction
TIME_ELAPSED,
// trigger compaction when both NUM_COMMITS and TIME_ELAPSED are satisfied
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,217 +18,34 @@

package org.apache.hudi.client;

import org.apache.hudi.avro.model.HoodieCompactionPlan;
import org.apache.hudi.client.common.HoodieSparkEngineContext;
import org.apache.hudi.common.model.HoodieAvroRecord;
import org.apache.hudi.common.model.HoodieBaseFile;
import org.apache.hudi.common.model.HoodieFileFormat;
import org.apache.hudi.common.model.HoodieKey;
import org.apache.hudi.common.model.HoodieRecord;
import org.apache.hudi.common.model.HoodieRecordPayload;
import org.apache.hudi.common.table.HoodieTableMetaClient;
import org.apache.hudi.common.util.CompactionUtils;
import org.apache.hudi.common.util.Option;
import org.apache.hudi.common.util.collection.Pair;
import org.apache.hudi.config.HoodieIndexConfig;
import org.apache.hudi.config.HoodieWriteConfig;
import org.apache.hudi.data.HoodieJavaRDD;
import org.apache.hudi.exception.HoodieIndexException;
import org.apache.hudi.index.HoodieIndex;
import org.apache.hudi.index.SparkHoodieIndexFactory;
import org.apache.hudi.table.HoodieSparkTable;
import org.apache.hudi.table.HoodieTable;

import org.apache.hadoop.conf.Configuration;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.StructType;

import java.io.Serializable;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.stream.Collectors;

import scala.Tuple2;

/**
* Provides an RDD based API for accessing/filtering Hoodie tables, based on keys.
*
* @deprecated This. Use {@link SparkRDDReadClient instead.}
*/
public class HoodieReadClient<T extends HoodieRecordPayload<T>> implements Serializable {
@Deprecated
public class HoodieReadClient<T extends HoodieRecordPayload<T>> extends SparkRDDReadClient<T> {

private static final long serialVersionUID = 1L;

/**
* TODO: We need to persist the index type into hoodie.properties and be able to access the index just with a simple
* base path pointing to the table. Until, then just always assume a BloomIndex
*/
private final transient HoodieIndex<?, ?> index;
private HoodieTable hoodieTable;
private transient Option<SQLContext> sqlContextOpt;
private final transient HoodieSparkEngineContext context;
private final transient Configuration hadoopConf;

/**
* @param basePath path to Hoodie table
*/
public HoodieReadClient(HoodieSparkEngineContext context, String basePath) {
this(context, HoodieWriteConfig.newBuilder().withPath(basePath)
// by default we use HoodieBloomIndex
.withIndexConfig(HoodieIndexConfig.newBuilder().withIndexType(HoodieIndex.IndexType.BLOOM).build()).build());
super(context, basePath);
}

/**
* @param context
* @param basePath
* @param sqlContext
*/
public HoodieReadClient(HoodieSparkEngineContext context, String basePath, SQLContext sqlContext) {
this(context, basePath);
this.sqlContextOpt = Option.of(sqlContext);
super(context, basePath, sqlContext);
}

/**
* Initializes the {@link HoodieReadClient} with engine context, base path, SQL context and index type.
*
* @param context Hudi Spark engine context
* @param basePath Base path of the table
* @param sqlContext {@link SQLContext} instance
* @param indexType Hudi index type
*/
public HoodieReadClient(HoodieSparkEngineContext context, String basePath, SQLContext sqlContext, HoodieIndex.IndexType indexType) {
this(context, HoodieWriteConfig.newBuilder().withPath(basePath)
.withIndexConfig(HoodieIndexConfig.newBuilder().withIndexType(indexType).build()).build());
this.sqlContextOpt = Option.of(sqlContext);
super(context, basePath, sqlContext, indexType);
}

/**
* @param clientConfig instance of HoodieWriteConfig
*/
public HoodieReadClient(HoodieSparkEngineContext context, HoodieWriteConfig clientConfig) {
this.context = context;
this.hadoopConf = context.getHadoopConf().get();
final String basePath = clientConfig.getBasePath();
// Create a Hoodie table which encapsulated the commits and files visible
HoodieTableMetaClient metaClient = HoodieTableMetaClient.builder().setConf(hadoopConf).setBasePath(basePath).setLoadActiveTimelineOnLoad(true).build();
this.hoodieTable = HoodieSparkTable.create(clientConfig, context, metaClient);
this.index = SparkHoodieIndexFactory.createIndex(clientConfig);
this.sqlContextOpt = Option.empty();
}

/**
* Adds support for accessing Hoodie built tables from SparkSQL, as you normally would.
*
* @return SparkConf object to be used to construct the SparkContext by caller
*/
public static SparkConf addHoodieSupport(SparkConf conf) {
conf.set("spark.sql.hive.convertMetastoreParquet", "false");
return conf;
}

private void assertSqlContext() {
if (!sqlContextOpt.isPresent()) {
throw new IllegalStateException("SQLContext must be set, when performing dataframe operations");
}
}

private Option<String> convertToDataFilePath(Option<Pair<String, String>> partitionPathFileIDPair) {
if (partitionPathFileIDPair.isPresent()) {
HoodieBaseFile dataFile = hoodieTable.getBaseFileOnlyView()
.getLatestBaseFile(partitionPathFileIDPair.get().getLeft(), partitionPathFileIDPair.get().getRight()).get();
return Option.of(dataFile.getPath());
} else {
return Option.empty();
}
}

/**
* Given a bunch of hoodie keys, fetches all the individual records out as a data frame.
*
* @return a dataframe
*/
public Dataset<Row> readROView(JavaRDD<HoodieKey> hoodieKeys, int parallelism) {
assertSqlContext();
JavaPairRDD<HoodieKey, Option<Pair<String, String>>> lookupResultRDD = checkExists(hoodieKeys);
JavaPairRDD<HoodieKey, Option<String>> keyToFileRDD =
lookupResultRDD.mapToPair(r -> new Tuple2<>(r._1, convertToDataFilePath(r._2)));
List<String> paths = keyToFileRDD.filter(keyFileTuple -> keyFileTuple._2().isPresent())
.map(keyFileTuple -> keyFileTuple._2().get()).collect();

// record locations might be same for multiple keys, so need a unique list
Set<String> uniquePaths = new HashSet<>(paths);
Dataset<Row> originalDF = null;
// read files based on the file extension name
if (paths.size() == 0 || paths.get(0).endsWith(HoodieFileFormat.PARQUET.getFileExtension())) {
originalDF = sqlContextOpt.get().read().parquet(uniquePaths.toArray(new String[uniquePaths.size()]));
} else if (paths.get(0).endsWith(HoodieFileFormat.ORC.getFileExtension())) {
originalDF = sqlContextOpt.get().read().orc(uniquePaths.toArray(new String[uniquePaths.size()]));
}
StructType schema = originalDF.schema();
JavaPairRDD<HoodieKey, Row> keyRowRDD = originalDF.javaRDD().mapToPair(row -> {
HoodieKey key = new HoodieKey(row.getAs(HoodieRecord.RECORD_KEY_METADATA_FIELD),
row.getAs(HoodieRecord.PARTITION_PATH_METADATA_FIELD));
return new Tuple2<>(key, row);
});

// Now, we need to further filter out, for only rows that match the supplied hoodie keys
JavaRDD<Row> rowRDD = keyRowRDD.join(keyToFileRDD, parallelism).map(tuple -> tuple._2()._1());
return sqlContextOpt.get().createDataFrame(rowRDD, schema);
}

/**
* Checks if the given [Keys] exists in the hoodie table and returns [Key, Option[FullFilePath]] If the optional
* FullFilePath value is not present, then the key is not found. If the FullFilePath value is present, it is the path
* component (without scheme) of the URI underlying file
*/
public JavaPairRDD<HoodieKey, Option<Pair<String, String>>> checkExists(JavaRDD<HoodieKey> hoodieKeys) {
return HoodieJavaRDD.getJavaRDD(
index.tagLocation(HoodieJavaRDD.of(hoodieKeys.map(k -> new HoodieAvroRecord<>(k, null))),
context, hoodieTable))
.mapToPair(hr -> new Tuple2<>(hr.getKey(), hr.isCurrentLocationKnown()
? Option.of(Pair.of(hr.getPartitionPath(), hr.getCurrentLocation().getFileId()))
: Option.empty())
);
}

/**
* Filter out HoodieRecords that already exists in the output folder. This is useful in deduplication.
*
* @param hoodieRecords Input RDD of Hoodie records.
* @return A subset of hoodieRecords RDD, with existing records filtered out.
*/
public JavaRDD<HoodieRecord<T>> filterExists(JavaRDD<HoodieRecord<T>> hoodieRecords) {
JavaRDD<HoodieRecord<T>> recordsWithLocation = tagLocation(hoodieRecords);
return recordsWithLocation.filter(v1 -> !v1.isCurrentLocationKnown());
}

/**
* Looks up the index and tags each incoming record with a location of a file that contains the row (if it is actually
* present). Input RDD should contain no duplicates if needed.
*
* @param hoodieRecords Input RDD of Hoodie records
* @return Tagged RDD of Hoodie records
*/
public JavaRDD<HoodieRecord<T>> tagLocation(JavaRDD<HoodieRecord<T>> hoodieRecords) throws HoodieIndexException {
return HoodieJavaRDD.getJavaRDD(
index.tagLocation(HoodieJavaRDD.of(hoodieRecords), context, hoodieTable));
}

/**
* Return all pending compactions with instant time for clients to decide what to compact next.
*
* @return
*/
public List<Pair<String, HoodieCompactionPlan>> getPendingCompactions() {
HoodieTableMetaClient metaClient =
HoodieTableMetaClient.builder().setConf(hadoopConf).setBasePath(hoodieTable.getMetaClient().getBasePath()).setLoadActiveTimelineOnLoad(true).build();
return CompactionUtils.getAllPendingCompactionPlans(metaClient).stream()
.map(
instantWorkloadPair -> Pair.of(instantWorkloadPair.getKey().getTimestamp(), instantWorkloadPair.getValue()))
.collect(Collectors.toList());
super(context, clientConfig);
}
}
Loading

0 comments on commit f3f5ab5

Please sign in to comment.