Skip to content

Code for our ICCV 2023 paper "Parametric Information Maximization for Generalized Category Discovery"

License

Notifications You must be signed in to change notification settings

ThalesGroup/pim-generalized-category-discovery

Repository files navigation

Parametric Information Maximization for Generalized Category Discovery

Updates

Paper

If you find this code useful for your research, please cite our paper (published at ICCV 2023):

@inproceedings{chiaroni2023parametric,
  title={Parametric information maximization for generalized category discovery},
  author={Chiaroni, Florent and Dolz, Jose and Masud, Ziko Imtiaz and Mitiche, Amar and Ben Ayed, Ismail},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={1729--1739},
  year={2023}
}

Abstract

We introduce a Parametric Information Maximization (PIM) model for the Generalized Category Discovery (GCD) problem. Specifically, we propose a bi-level optimization formulation, which explores a parameterized family of objective functions, each evaluating a weighted mutual information between the features and the latent labels, subject to supervision constraints from the labeled samples. Our formulation mitigates the class-balance bias encoded in standard information maximization approaches, thereby handling effectively both short-tailed and long-tailed data sets. We report extensive experiments and comparisons demonstrating that our PIM model consistently sets new state-of-the-art performances in GCD across six different datasets, more so when dealing with challenging fine-grained problems.

Get started

Pre-requisites

  • Python 3.9.4
  • numpy 1.22.0
  • scikit-learn 0.24.1
  • scipy 1.11.1
  • yaml 6.0
  • tqdm 4.65.0
  • Pytorch 1.11.0
  • CUDA 11.3

You can install all the pre-requisites using

$ cd <root_dir>
$ pip install -r requirements.txt

Feature map sets

This code enables to directly apply our approach PIM on top of the feature map sets, which can be extracted with the ViT-B-16 encoder following the training procedure proposed in GCD code. The extracted feature map sets can be directly downloaded here.

Running the code

The script pim_partitioning.py runs the proposed PIM partitioning model.

You can set the feature map set paths in the config file ./configs/config_fm_paths.yml.

Apply PIM on a given feature map set as follows:

$ cd <root_dir>
$ python pim_partitioning.py --dataset <dataset_name>

where <dataset_name> must be replaced with one of the following dataset names:

  • cifar10 for CIFAR-10
  • cifar100 for CIFAR-100
  • imagenet_100 for ImageNet-100
  • cub for CUB
  • scars for Stanford-Cars
  • herbarium for Herbarium19

Recommendations

A small lambda value close to 0 is more appropriate on balanced datasets (such as CUB) while a lambda value close to 1 is more appropriate on long-tailed imbalanced datasets (such as Herbarium19). Note: Our code enables, without the need of a validation set, to automatically estimate the optimal lambda value for each unlabeled feature map set.

Contributing

If you are interested in contributing to this project, start by reading our Contributing guide.

License

The code is licensed under the MIT (see LICENSE for details).

About

Code for our ICCV 2023 paper "Parametric Information Maximization for Generalized Category Discovery"

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages