-
Notifications
You must be signed in to change notification settings - Fork 0
ThomasRigoni7/PINN4GPR
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
======== PINN4GPR ======== ------------------------------------------------------------------------------------------------------------ Railway infrastructure GPR dataset creation and modeling via black box and physics-informed neural networks. ------------------------------------------------------------------------------------------------------------ This project enables you to: * Generate Ground Penetrating Radar (GPR) datasets of realistic railway track configurations with `gprMax <https://www.gprmax.com/>`_. * Train a CNN-based surrogate model for gprMax on the generated data, which at inference time is two orders of magnitude faster than FDTD simulations. * Use the surrogate model for faster large-scale dataset generation. * Explore the use of physics-informed neural networks (PINNs) for the approximation of GPR wavefield data in complex railway track geometries. Refer to the `full documentation <https://pinn4gpr.readthedocs.io/en/latest/index.html>`_ for installation and usage instructions. An in-depth account of this work is available on my `Master Thesis report <master_thesis_report.pdf>`_. Dataset generation ================== A-scan dataset -------------- .. |geom_ascan| image:: figures/dataset_creation/ascan_dataset/geom.png :height: 300 .. |ascan| image:: figures/dataset_creation/ascan_dataset/ascan.png :height: 300 ============ ======= |geom_ascan| |ascan| geometry ascan ============ ======= B-scan dataset -------------- .. |geom_bscan| image:: figures/dataset_creation/bscan_dataset/geom.png :height: 300 .. |bscan| image:: figures/dataset_creation/bscan_dataset/bscan.png :height: 300 ============ ======= |geom_bscan| |bscan| geometry bscan ============ ======= CNN black box model =================== An encoder-decoder CNN architecture was used to approximate the B-scan predictions from the sample geometry: .. |geom_cnn| image:: figures/geom2bscan/geom.png :height: 250 .. |label_cnn| image:: figures/geom2bscan/label.png :height: 250 .. |pred_cnn| image:: figures/geom2bscan/prediction.png :height: 250 ========== =========== ========== |geom_cnn| |label_cnn| |pred_cnn| geometry label prediction ========== =========== ========== PINN models =========== MLP on uniform geometry ----------------------- .. |uniform_fig| image:: figures/mlp_uniform/final_40.png :height: 200 Time domain extension for a uniform geometry: =========================================================== |uniform_fig| ground truth, PINN prediction, NN prediction and difference =========================================================== MLP on two layer geometry ------------------------- Time domain extension for a two layer geometry: .. |2layer_fig| image:: figures/mlp_2layer/final_45.png :height: 200 =========================================================== |2layer_fig| ground truth, PINN prediction, NN prediction and difference =========================================================== MLP on railway geometry ----------------------- .. |mlp_rail_fig| image:: figures/mlp_rail/final_1.png :height: 200 ============================================================ |mlp_rail_fig| ground truth, PINN prediction, NN prediction and differences ============================================================ CNN on railway geometry ----------------------- .. |time2image_gt| image:: figures/time2image/gt.gif :width: 400 .. |time2image_pred| image:: figures/time2image/preds.gif :width: 400 =============== ================= |time2image_gt| |time2image_pred| ground truth PINN predictions =============== ================= 1D wave propagation ------------------- .. |1D_mlp| image:: figures/1D_wavefield/mlp.png :width: 250 .. |1D_cnn| image:: figures/1D_wavefield/cnn.png :width: 250 .. |1D_discrete_mlp| image:: figures/1D_wavefield/discrete_mlp.png :width: 250 distance/time charts: ======== ======= ================= |1D_mlp| |1D_cnn| |1D_discrete_mlp| MLP CNN discrete MLP ======== ======== =================
About
Railway infrastructure GPR dataset creation and modeling via black box and physics-informed neural networks.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published