Skip to content

Commit

Permalink
RT-BENE model evaluation (#73)
Browse files Browse the repository at this point in the history
* Add evaluation for RT-BENE

* Ignore some more models

* Add testing code description to README

Co-authored-by: Kevin Cortacero <cortacero.kevin@gmail.com>
  • Loading branch information
Tobias-Fischer and Kevin Cortacero authored Jun 9, 2020
1 parent a46cec1 commit 08b1499
Show file tree
Hide file tree
Showing 5 changed files with 213 additions and 52 deletions.
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,9 @@ rt_gene/model_nets/all_subjects_mpii_prl_utmv_2_02.h5
rt_gene/model_nets/all_subjects_mpii_prl_utmv_3_02.h5
rt_gene/model_nets/blink_model_1.h5
rt_gene/model_nets/blink_model_2.h5
rt_gene/model_nets/rt-bene_mobilenetv2_fold1_best.h5
rt_gene/model_nets/rt-bene_mobilenetv2_fold2_best.h5
rt_gene/model_nets/rt-bene_mobilenetv2_fold3_best.h5
rt_gene/model_nets/Model_allsubjects1_pytorch.model
rt_gene/model_nets/Model_allsubjects2_pytorch.model
rt_gene/model_nets/Model_allsubjects3_pytorch.model
Expand Down
2 changes: 1 addition & 1 deletion rt_bene_model_training/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ For pip users: `pip install tensorflow-gpu numpy tqdm opencv-python scikit-learn
This code was used to train the blink estimator for RT-BENE. The labels for the RT-BENE blink dataset are contained in the [rt_bene_dataset](../rt_bene_dataset) directory. The images corresponding to the labels can be downloaded from the RT-GENE dataset (labels are only available for the "noglasses" part): [download](https://zenodo.org/record/2529036) [(alternative link)](https://goo.gl/tfUaDm). Please run `python train_blink_model.py --help` to see the required arguments to train the model.

## Model testing code
The evaluation code will be provided soon; please check back.
Evaluation code for a 3-fold evaluation is provided in the [evaluate_blink_model.py](./evaluate_blink_model.py) file. An example to train and evaluate an ensemble of models can be found in [train_and_evaluate.py](./train_and_evaluate.py). Please run `python train_and_evaluate.py --help` to see the required arguments.

![Results](../rt_bene_precision_recall.png)

96 changes: 96 additions & 0 deletions rt_bene_model_training/evaluate_blink_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
#!/usr/bin/env python

import gc

import tensorflow as tf
from tensorflow.keras.models import load_model

from sklearn.metrics import confusion_matrix, roc_curve, auc, average_precision_score

import numpy as np

tf.compat.v1.disable_eager_execution()

config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))


fold_infos = {
'fold1': [2],
'fold2': [1],
'fold3': [0],
'all': [2, 1, 0]
}

model_metrics = [tf.keras.metrics.BinaryAccuracy()]


def estimate_metrics(testing_fold, model_instance):
threshold = 0.5
p = model_instance.predict(x=testing_fold['x'], verbose=0)
p = p >= threshold
matrix = confusion_matrix(testing_fold['y'], p)
ap = average_precision_score(testing_fold['y'], p)
fpr, tpr, thresholds = roc_curve(testing_fold['y'], p)
roc = auc(fpr, tpr)
return matrix, ap, roc


def get_metrics_from_matrix(matrix):
tp, tn, fp, fn = matrix[1, 1], matrix[0, 0], matrix[0, 1], matrix[1, 0]
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1score = 2. * (precision * recall) / (precision + recall)
return precision, recall, f1score


def threefold_evaluation(dataset, model_paths_fold1, model_paths_fold2, model_paths_fold3, input_size):
folds = ['fold1', 'fold2', 'fold3']
aps = []
rocs = []
recalls = []
precisions = []
f1scores = []
models = []

for fold_to_eval_on, model_paths in zip(folds, [model_paths_fold1, model_paths_fold2, model_paths_fold3]):
if len(model_paths_fold1) > 1:
models = [load_model(model_path, compile=False) for model_path in model_paths]
img_input_l = tf.keras.Input(shape=input_size, name='img_input_L')
img_input_r = tf.keras.Input(shape=input_size, name='img_input_R')
tensors = [model([img_input_r, img_input_l]) for model in models]
output_layer = tf.keras.layers.average(tensors)
model_instance = tf.keras.Model(inputs=[img_input_r, img_input_l], outputs=output_layer)
else:
model_instance = load_model(model_paths[0])
model_instance.compile()

testing_fold = dataset.get_training_data(fold_infos[fold_to_eval_on]) # get the testing fold subjects

matrix, ap, roc = estimate_metrics(testing_fold, model_instance)
aps.append(ap)
rocs.append(roc)
precision, recall, f1score = get_metrics_from_matrix(matrix)
recalls.append(recall)
precisions.append(precision)
f1scores.append(f1score)

del model_instance, testing_fold
# noinspection PyUnusedLocal
for model in models:
del model
gc.collect()

evaluation = {'AP': {}, 'ROC': {}, 'precision': {}, 'recall': {}, 'f1score': {}}
evaluation['AP']['avg'] = np.mean(np.array(aps))
evaluation['AP']['std'] = np.std(np.array(aps))
evaluation['ROC']['avg'] = np.mean(np.array(rocs))
evaluation['ROC']['std'] = np.std(np.array(rocs))
evaluation['precision']['avg'] = np.mean(np.array(precisions))
evaluation['precision']['std'] = np.std(np.array(precisions))
evaluation['recall']['avg'] = np.mean(np.array(recalls))
evaluation['recall']['std'] = np.std(np.array(recalls))
evaluation['f1score']['avg'] = np.mean(np.array(f1scores))
evaluation['f1score']['std'] = np.std(np.array(f1scores))
return evaluation
52 changes: 52 additions & 0 deletions rt_bene_model_training/train_and_evaluate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
from evaluate_blink_model import threefold_evaluation
from train_blink_model import ThreefoldTraining
from dataset_manager import RTBeneDataset
from pathlib import Path
import argparse
import pprint

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("model_save_root", help="target folder to save the models (auto-saved)")
parser.add_argument("csv_subject_list", help="path to the dataset csv file")
parser.add_argument("--ensemble_size", type=int, default=1, help="number of models to train for the ensemble")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--epochs", type=int, default=15)
parser.add_argument("--input_size", type=tuple, help="input size of images", default=(96, 96))

args = parser.parse_args()

fold_list = ['fold1', 'fold2', 'fold3']
ensemble_size = args.ensemble_size # 1 is considered as single model
epochs = args.epochs
batch_size = args.batch_size
input_size = args.input_size
csv_subject_list = args.csv_subject_list
model_save_root = args.model_save_root

dataset = RTBeneDataset(csv_subject_list, input_size)

threefold_training = ThreefoldTraining(dataset, epochs, batch_size, input_size)

all_evaluations = {}

for backbone in ['densenet121', 'resnet50', 'mobilenetv2']:
models_fold1 = []
models_fold2 = []
models_fold3 = []

for i in range(1, ensemble_size + 1):
model_save_path = Path(model_save_root + backbone + '/' + str(i))
model_save_path.mkdir(parents=True, exist_ok=True)
threefold_training.train(backbone, str(model_save_path) + '/')

models_fold1.append(str(model_save_path) + '/rt-bene_' + backbone + '_fold1_best.h5')
models_fold2.append(str(model_save_path) + '/rt-bene_' + backbone + '_fold2_best.h5')
models_fold3.append(str(model_save_path) + '/rt-bene_' + backbone + '_fold3_best.h5')

evaluation = threefold_evaluation(dataset, models_fold1, models_fold2, models_fold3, input_size)
all_evaluations[backbone] = evaluation

threefold_training.free()

pprint.pprint(all_evaluations)
112 changes: 61 additions & 51 deletions rt_bene_model_training/train_blink_model.py
100755 → 100644
Original file line number Diff line number Diff line change
Expand Up @@ -55,75 +55,85 @@ def create_model(backbone, input_shape, lr, metrics):
base = create_model_base(backbone, input_shape)

# define the 2 inputs (left and right eyes)
left_input = Input(shape=input_shape)
left_input = Input(shape=input_shape)
right_input = Input(shape=input_shape)

# get the 2 outputs using shared layers
out_left = base(left_input)
out_left = base(left_input)
out_right = base(right_input)

# average the predictions
merged = Average()([out_left, out_right])
model = Model(inputs=[right_input, left_input], outputs=merged)
model = Model(inputs=[right_input, left_input], outputs=merged)

model.compile(loss='binary_crossentropy', optimizer=Adam(lr=lr), metrics=metrics)
model.summary()

return model


class ThreefoldTraining(object):
def __init__(self, dataset, epochs, batch_size, input_size):
self.fold_map = {'fold1': [0, 1], 'fold2': [0, 2], 'fold3': [1, 2]}
self.model_metrics = [tf.keras.metrics.BinaryAccuracy(), tf.keras.metrics.Recall(), tf.keras.metrics.Precision()]
self.dataset = dataset
self.validation_set = dataset.get_validation_data()
self.epochs = epochs
self.batch_size = batch_size
self.input_size = [input_size[0], input_size[1], 3]
self.learning_rate = 1e-4

def train(self, backbone, model_save_path):
for fold_name, training_subjects_fold in self.fold_map.items():
training_set = self.dataset.get_training_data(training_subjects_fold)
positive = training_set['positive']
negative = training_set['negative']

print('Number of positive samples in training data: {} ({:.2f}% of total)'.
format(positive, 100 * float(positive) / len(training_set['y'])))

model_instance = create_model(backbone, self.input_size, self.learning_rate, self.model_metrics)
name = 'rt-bene_' + backbone + '_' + fold_name

weight_for_0 = 1. / negative * (negative + positive)
weight_for_1 = 1. / positive * (negative + positive)
class_weight = {0: weight_for_0, 1: weight_for_1}

save_best = ModelCheckpoint(model_save_path + name + '_best.h5', monitor='val_loss', verbose=1,
save_best_only=True, save_weights_only=False, mode='min', period=1)
auto_save = ModelCheckpoint(model_save_path + name + '_auto_{epoch:02d}.h5', verbose=1,
save_best_only=False, save_weights_only=False, period=1)

# train the model
model_instance.fit(x=training_set['x'], y=training_set['y'],
batch_size=self.batch_size, epochs=self.epochs,
verbose=1,
validation_data=(self.validation_set['x'], self.validation_set['y']),
callbacks=[save_best, auto_save],
class_weight=class_weight)
# noinspection PyUnusedLocal
model_instance, training_set = None, None
del model_instance, training_set
gc.collect()

def free(self):
self.validation_set = None
del self.validation_set


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("model_base", choices=['densenet121', 'resnet50', 'mobilenetv2'])
parser.add_argument("model_path", help="target folder to save the models (auto-saved)")
parser.add_argument("backbone", choices=['densenet121', 'resnet50', 'mobilenetv2'])
parser.add_argument("model_save_path", help="target folder to save the models (auto-saved)")
parser.add_argument("csv_subject_list", help="path to the dataset csv file")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--epochs", type=int, default=8)
parser.add_argument("--epochs", type=int, default=15)
parser.add_argument("--input_size", type=tuple, help="input size of images", default=(96, 96))

args = parser.parse_args()
model_base = args.model_base
epochs = args.epochs
batch_size = args.batch_size
input_size = args.input_size

dataset = RTBeneDataset(args.csv_subject_list, input_size)
fold_infos = [
([0, 1], 'fold1'),
([0, 2], 'fold2'),
([1, 2], 'fold3')
]

validation_set = dataset.get_validation_data()

# 3 folds training
for subjects_train, fold_name in fold_infos:
training_fold = dataset.get_training_data(subjects_train)
positive = training_fold['positive']
negative = training_fold['negative']

print('Number of positive samples in training data: {} ({:.2f}% of total)'.
format(positive, 100 * float(positive) / len(training_fold['y'])))

model_metrics = [tf.keras.metrics.BinaryAccuracy(), tf.keras.metrics.Recall(), tf.keras.metrics.Precision()]
model_instance = create_model(args.model_base, [input_size[0], input_size[1], 3], 1e-4, model_metrics)
name = 'rt-bene_' + args.model_base + '_' + fold_name

weight_for_0 = 1. / negative * (negative + positive)
weight_for_1 = 1. / positive * (negative + positive)
class_weight = {0: weight_for_0, 1: weight_for_1}

save_best = ModelCheckpoint(args.model_path + name + '_best.h5', monitor='val_loss', verbose=1,
save_best_only=True, save_weights_only=False, mode='min', period=1)
auto_save = ModelCheckpoint(args.model_path + name + '_auto_{epoch:02d}.h5', verbose=1,
save_best_only=False, save_weights_only=False, period=1)

# train the model
model_instance.fit(x=training_fold['x'], y=training_fold['y'], batch_size=batch_size, epochs=epochs, verbose=1,
validation_data=(validation_set['x'], validation_set['y']), callbacks=[save_best, auto_save],
class_weight=class_weight)
model_instance, training_fold = None, None
del model_instance, training_fold
gc.collect()
validation_set = None
del validation_set

rtbene_dataset = RTBeneDataset(args.csv_subject_list, args.input_size)

threefold_training = ThreefoldTraining(rtbene_dataset, args.epochs, args.batch_size, args.input_size)
threefold_training.train(args.backbone, args.model_save_path + '/')
threefold_training.free()

0 comments on commit 08b1499

Please sign in to comment.