Skip to content

TomKellyGenetics/leiden

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Leiden Algorithm

leiden version 0.4.3.1

CRAN_Status_Badge Travis Build Status CircleCI AppVeyor Build Status Project Status: Active – The project has reached a stable, usable state and is being actively developed. codecov Downloads Total Downloads GitHub Views

Clustering with the Leiden Algorithm in R

This package allows calling the Leiden algorithm for clustering on an igraph object from R. See the Python and Java implementations for more details:

https://github.com/CWTSLeiden/networkanalysis

https://github.com/vtraag/leidenalg

Install

Note: this is the development version of the leiden R package. This version has remote dependencies on the development version of the R igraph package. This must be cloned and compiled from source. It depends on functions not on CRAN (yet).

This development version is for testing an upcoming release. It is not recommended to use this unless you require features not supported in previous releases.

Dependancies

This package requires the 'leidenalg' and 'igraph' modules for python (2) to be installed on your system. For example:

pip install leidenalg numpy python-igraph

Note you may need to uninstall the igraph 0.1.11 (now deprecated to jgraph) and install python-igraph or igraph-0.7.0:

pip uninstall igraph
pip install leidenalg python-igraph

The python version can be installed with pip or conda:

pip uninstall -y igraph
pip install -U -q leidenalg python-igraph
conda install -c vtraag leidenalg

It is also possible to install the python dependencies with reticulate in R.

library("reticulate")
py_install("python-igraph")
py_install("leidenalg", forge = TRUE)

If you do not have root access, you can use pip install --user or pip install --prefix to install these in your user directory (which you have write permissions for) and ensure that this directory is in your PATH so that Python can find it.

Dependancies can also be installed from a conda repository. This is recommended for Windows users:

conda -c vtraag python-igraph leidenalg

Stable release

The stable 'leiden' package and the dependancies can be installed from CRAN:

install.packages("leiden")

Development version

The 'devtools' package can also be used to install development version of 'leiden' and the dependancies (igraph and reticulate) from GitHub:

if (!requireNamespace("devtools"))
    install.packages("devtools")
devtools::install_github("TomKellyGenetics/leiden", ref = "master")

Development version

To use or test the development version, install the "dev" branch from GitHub.

if (!requireNamespace("devtools"))
    install.packages("devtools")
devtools::install_github("TomKellyGenetics/leiden", ref = "dev")

Please submit pull requests to the "dev" branch. This can be downloaded to your system with:

git clone --branch dev git@github.com:TomKellyGenetics/leiden.git

Usage

This package provides a function to perform clustering with the Leiden algorithm:

partition <- leiden(adjacency_matrix)

Use with iGraph

For an igraph object 'graph' in R:

adjacency_matrix <- igraph::as_adjacency_matrix(graph)
partition <- leiden(adjacency_matrix)

Calling leiden directly on a graph object is also available:

partition <- leiden(graph_object)

See the benchmarking vignette on details of performance.

Computing partitions on data matrices or dimension reductions

To generate an adjacency matrix from a dataset, we can compute the shared nearest neighbours (SNN) from the data. For example, for a dataset data_mat with n features (rows) by m samples or cells (columns), we generate an adjacency matrix of nearest neighbours between samples.

library(RANN)
snn <- RANN::nn2(t(data_mat), k=30)$nn.idx
adjacency_matrix <- matrix(0L, ncol(data_mat), ncol(data_mat))
rownames(adjacency_matrix) <- colnames(adjacency_matrix) <- colnames(data_mat)
for(ii in 1:ncol(data_mat)) {
    adjacency_matrix[i,colnames(data_mat)[snn[ii,]]] <- 1L
}
#check that rows add to k
sum(adjacency_matrix[1,]) == 30
table(apply(adjacency_matrix, 1, sum))

For a dimension reduction embedding of m samples (rows) by n dimensions (columns):

library(RANN)
snn <- RANN::nn2(embedding, k=30)$nn.idx
adjacency_matrix <- matrix(0L, nrow(embedding), nrow(embedding))
rownames(adjacency_matrix) <- colnames(adjacency_matrix) <- colnames(data_mat)
for(ii in 1:nrow(embedding)) {
    adjacency_matrix[ii,rownames(data_mat)[snn[ii,]]] <- 1L
}
#check that rows add to k
sum(adjacency_matrix[1,]) == 30
table(apply(adjacency_matrix, 1, sum))

This is compatible with PCA, tSNE, or UMAP results.

Use with Seurat

Seurat version 2

To use Leiden with the Seurat pipeline for a Seurat Object object that has an SNN computed (for example with Seurat::FindClusters with save.SNN = TRUE). This will compute the Leiden clusters and add them to the Seurat Object Class.

library("Seurat")
FindClusters(pbmc_small)
adjacency_matrix <- as.matrix(pbmc_small@snn)
partition <- leiden(adjacency_matrix)
pbmc_small@ident <- as.factor(partition)
names(test@ident) <- rownames(test@meta.data)
pbmc_small@meta.data$ident <- as.factor(partition)

Seurat objects contain an SNN graph that can be passed directly to the igraph method. For example

library("Seurat")
FindClusters(pbmc_small)
membership <- leiden(pbmc_small@snn)
table(membership)
pbmc_small@ident <- as.factor(membership)
names(pbmc_small@ident) <- rownames(pbmc_small@meta.data)
pbmc_small@meta.data$ident <- as.factor(membership)
library("RColorBrewer")
colourPal <- function(groups) colorRampPalette(brewer.pal(min(length(names(table(groups))), 11), "Set3"))(length(names(table(groups))))

pbmc_small <- RunPCA(object = pbmc_small, do.print = TRUE, pcs.print = 1:5, genes.print = 5)
PCAPlot(object = pbmc_small, colors.use = colourPal(pbmc_small@ident), group.by = "ident")

pbmc_small <- RunTSNE(object = pbmc_small, dims.use = 1:20, do.fast = TRUE, dim.embed = 2)
TSNEPlot(object = pbmc_small, colors.use = colourPal(pbmc_small@ident), group.by = "ident")

pbmc_small <- RunUMAP(object = pbmc_small, dims.use = 1:20, metric = "correlation", max.dim = 2)
DimPlot(pbmc_small, reduction.use = "umap", colors.use = colourPal(pbmc_small@ident), group.by = "ident")

Seurat version 3 (or higher)

Note that this code is designed for Seurat version 2 releases. For Seurat version 3 objects, the Leiden algorithm will be implemented in the Seurat version 3 package with Seurat::FindClusters and algorithm = "leiden").

library("Seurat")
FindClusters(pbmc_small, algorithm = 4)

These clusters can then be plotted with:

library("RColorBrewer")
colourPal <- function(groups) colorRampPalette(brewer.pal(min(length(names(table(groups))), 11), "Set3"))(length(names(table(groups))))

PCAPlot(object = pbmc_small, colors.use = colourPal(pbmc_small@active.ident), group.by = "ident")

TSNEPlot(object = pbmc_small, colors.use = colourPal(pbmc_small@active.ident), group.by = "ident")

pbmc_small <- RunUMAP(object = pbmc_small, reduction.use = "pca", dims.use = 1:20, metric = "correlation", max.dim = 2)
DimPlot(pbmc_small, reduction.use = "umap", colors.use = colourPal(pbmc_small@active.ident), group.by = "ident")

Example

#generate example data
adjacency_matrix <- rbind(cbind(matrix(round(rbinom(4000, 1, 0.8)), 20, 20), matrix(round(rbinom(4000, 1, 0.3)), 20, 20), matrix(round(rbinom(400, 1, 0.1)), 20, 20)),
##'                           cbind(matrix(round(rbinom(400, 1, 0.3)), 20, 20), matrix(round(rbinom(400, 1, 0.8)), 20, 20), matrix(round(rbinom(4000, 1, 0.2)), 20, 20)),
##'                           cbind(matrix(round(rbinom(400, 1, 0.3)), 20, 20), matrix(round(rbinom(4000, 1, 0.1)), 20, 20), matrix(round(rbinom(4000, 1, 0.9)), 20, 20)))
library("igraph")
rownames(adjacency_matrix) <- 1:60
colnames(adjacency_matrix) <- 1:60
graph_object <- graph_from_adjacency_matrix(adjacency_matrix, mode = "directed")
#plot graph structure
library("devtools")
install_github("TomKellyGenetics/igraph.extensions")
library("plot.igraph")
plot_directed(graph_object, cex.arrow = 0.3, col.arrow = "grey50")
#generate partitions
partition <- leiden(adjacency_matrix)
table(partition)
#plot results
library("RColorBrewer")
node.cols <- brewer.pal(max(partition),"Pastel1")[partition]
plot_directed(graph_object, cex.arrow = 0.3, col.arrow = "grey50", fill.node = node.cols)

A graph plot of results showing distinct clusters

Vignette

For more details see the follow vignettes:

  • running leiden on an adjacency matrix

https://github.com/TomKellyGenetics/leiden/blob/master/vignettes/run_leiden.html

  • running leiden on an igraph object

https://github.com/TomKellyGenetics/leiden/blob/master/vignettes/run_igraph.html

  • comparing running leiden in Python to various methods in R

https://github.com/TomKellyGenetics/leiden/blob/master/vignettes/benchmarking.html

Citation

Please cite this implementation R in if you use it:

To cite the leiden package in publications use:

  S. Thomas Kelly (2023). leiden: R implementation of the Leiden algorithm. R
  package version 0.4.3.1 https://github.com/TomKellyGenetics/leiden

A BibTeX entry for LaTeX users is

  @Manual{,
    title = {leiden: R implementation of the Leiden algorithm},
    author = {S. Thomas Kelly},
    year = {2023},
    note = {R package version 0.4.3.1},
    url = {https://github.com/TomKellyGenetics/leiden},
  }

Please also cite the original publication of this algorithm.

Traag, V.A., Waltman. L., Van Eck, N.-J. (2019). From Louvain to
       Leiden: guaranteeing well-connected communities.
       Sci Rep 9, 5233 <https://doi.org/10.1038/s41598-019-41695-z>