A lightweight freamwork based on fastai course for training pytorch models conveniently. It is also compatible with pytorch_geometric dataset and models for Graph Neural Networks.
- Compatible with PyG
- Graph level learning: It is compatible with pytorch_geometric for Graph Neural Networks of graph classification and other graph level learning.
- Node level learning: It can be used in node classification or other node level learning with sigle pytorch_geometric Data.
- Easy to Use
- It likes FastAI but far more lightweight.
pip install bijou
- Pytorch
- Matplotlib
- Numpy
- tqdm
- Networkx
- torch-geometric (optional)
import torch.nn as nn, torch.nn.functional as F, torch.optim as optim
from bijou.learner import Learner
from bijou.data import Dataset, DataLoader, DataBunch
from bijou.metrics import accuracy
from bijou.datasets import mnist
import matplotlib.pyplot as plt
# 1. dataset
x_train, y_train, x_valid, y_valid, x_test, y_test = mnist()
train_ds, valid_ds, test_ds = Dataset(x_train, y_train), Dataset(x_valid, y_valid), Dataset(x_test, y_test)
train_dl = DataLoader(train_ds, batch_size=128, shuffle=True)
valid_dl = DataLoader(valid_ds, batch_size=128)
test_dl = DataLoader(test_ds, batch_size=128)
train_db = DataBunch(train_dl, valid_dl)
# 2. model and optimizer
in_dim = train_db.train_ds.x.shape[1]
out_dim = y_train.max().item()+1
model = nn.Sequential(nn.Linear(in_dim, 64), nn.ReLU(), nn.Linear(64, out_dim))
opt = optim.SGD(model.parameters(), lr=0.35)
# 3. learner
loss_func = F.cross_entropy
learner = Learner(model, opt, loss_func, train_db, metrics=[accuracy])
# 4. fit
learner.fit(10)
# 5. test
learner.test(valid_dl)
# 6. predict
pred = learner.predict(x_valid)
print(pred.size())
# 7. plot
learner.recorder.plot_metrics()
plt.show()
NOTE: Performance of this GNN model's is not good, as the dataset is highly unbalanced.
import torch, torch.nn as nn, torch.nn.functional as F, torch.optim as optim
from torch_geometric.data import DataLoader
from torch_geometric.nn import global_max_pool, TopKPooling, GCNConv
from bijou.learner import Learner
from bijou.datasets import yoochoose_10k
from bijou.data import PyGDataLoaderWrapper, DataBunch
from bijou.metrics import accuracy
from examples.pyg_dataset import YooChooseBinaryDataset
import matplotlib.pyplot as plt
# 1. dataset
dataset = YooChooseBinaryDataset(root=yoochoose_10k()).shuffle()
train_ds, val_ds, test_ds = dataset[:8000], dataset[8000:9000], dataset[9000:]
train_dl = PyGDataLoaderWrapper(DataLoader(train_ds, batch_size=64, shuffle=True))
val_dl = PyGDataLoaderWrapper(DataLoader(val_ds, batch_size=64))
test_dl = PyGDataLoaderWrapper(DataLoader(test_ds, batch_size=64))
train_db = DataBunch(train_dl, val_dl)
# 2. mode and optimizer
class Model(nn.Module):
def __init__(self, feature_dim, class_num, embed_dim=64, gcn_dims=(32, 32), dense_dim=64):
super().__init__()
self.embedding = torch.nn.Embedding(num_embeddings=feature_dim, embedding_dim=embed_dim)
self.gcns = nn.ModuleList()
in_dim = embed_dim
for dim in gcn_dims:
self.gcns.append(GCNConv(in_dim, dim))
in_dim = dim
self.graph_pooling = TopKPooling(gcn_dims[-1], ratio=0.8)
self.dense = nn.Linear(gcn_dims[-1], dense_dim)
self.out = nn.Linear(dense_dim, class_num)
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
x = self.embedding(x)
x = x.squeeze(1)
for gcn in self.gcns:
x = gcn(x, edge_index)
x = F.relu(x)
x, _, _, batch, _, _ = self.graph_pooling(x, edge_index, None, batch)
x = global_max_pool(x, batch)
outputs = self.dense(x)
outputs = F.relu(outputs)
outputs = self.out(outputs)
return outputs
model = Model(dataset.item_num, 2)
opt = optim.SGD(model.parameters(), lr=0.5)
# 3. learner
learner = Learner(model, opt, F.cross_entropy, train_db, metrics=[accuracy])
# 4. fit
learner.fit(3)
# 5. test
learner.test(test_dl)
# 6. predict
pred = learner.predict(test_dl)
print(pred.size())
# 7. plot
learner.recorder.plot_metrics()
plt.show()
from torch_geometric.datasets import Planetoid
import torch.nn as nn, torch.nn.functional as F, torch.optim as optim
from torch_geometric.nn import GCNConv
from bijou.data import PyGDataWrapper, DataBunch
from bijou.learner import Learner
from bijou.metrics import masked_cross_entropy, masked_accuracy
from bijou.datasets import cora
import matplotlib.pyplot as plt
# 1. dataset
dataset = Planetoid(root=cora(), name='Cora')
train_data = PyGDataWrapper(dataset[0], 'train')
val_data = PyGDataWrapper(dataset[0], 'val')
test_data = PyGDataWrapper(dataset[0], 'test')
data = DataBunch(train_data, val_data)
# 2. model and optimizer
class Model(nn.Module):
def __init__(self, feature_num, class_num):
super().__init__()
self.conv1 = GCNConv(feature_num, 16)
self.conv2 = GCNConv(16, class_num)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.relu(x)
x = self.conv2(x, edge_index)
outputs = F.relu(x)
return outputs
model = Model(dataset.num_node_features, dataset.num_classes)
opt = optim.SGD(model.parameters(), lr=0.5, weight_decay=0.01)
# 3. learner
learner = Learner(model, opt, masked_cross_entropy, data, metrics=[masked_accuracy])
# 4. fit
learner.fit(100)
# 5. test
learner.test(test_data)
# 6. predict
pred = learner.predict(dataset[0])
print(pred.size())
# 7. plot
learner.recorder.plot_metrics()
plt.show()