Skip to content

Codes accompanying the paper "Influence-Based Multi-Agent Exploration" (ICLR 2020 spotlight)

License

Notifications You must be signed in to change notification settings

TonghanWang/EITI-EDTI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Influence-Based Multi-Agent Exploration

Note

This codebase accompanies the paper Influence-Based Multi-Agent Exploration, and is based on the PPO2 implementation provided by the OpenAI Baselines codebase.

Run an experiment

In the folder baselines/, run the following command to train EDIT on the task pass.

python run.py
--alg=ppo2
--env=pass
--network=mlp
--num_timesteps=6e8
--ent_coef=0.1
--num_hidden=32
--num_layers=3
--value_network=copy
--save_path=$SAVE_PATH
--num_env=32
--gamma_dec=10.
--gamma_cen=0
--gamma_coor_tv_e=0.1
--gamma_coor_tv_c=1.
--gamma_coor_t=0
--r_tv
--s_data_gather
--s_alg_name=coor_tv
--s_data_path=$DATA_PATH
--s_try_num=1

Here, gamma_dec (or gamma_cen) is η in the paper, gamma_coor_tv_e is βext, gamma_coor_tv_c is βint, and gamma_coor_t is βT. (See Table 2 on page 20 of the paper for the specific values for each task.)

To run EITI, specify the option --t.

To tun EDTI, specify the option --r_tv.

Requirements

  • TensorFlow >= 1.4.0
  • TensorFlow < 2.0.0
  • gym == 0.13.0
  • numpy
  • cv2
  • imp
  • mpi4py
  • scipy
  • matplotlib

About

Codes accompanying the paper "Influence-Based Multi-Agent Exploration" (ICLR 2020 spotlight)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published