Skip to content

Source code for paper "Feature Learning based Deep Supervised Hashing with Pairwise Labels" on IJCAI-2016

Notifications You must be signed in to change notification settings

TreezzZ/DPSH_PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Feature Learning based Deep Supervised Hashing with Pairwise Labels

REQUIREMENTS

  1. pytorch
  2. loguru

pip install -r requirements.txt

DATASETS

  1. CIFAR-10
  2. NUS-WIDE Password: uhr3
  3. Imagenet100 Password: ynwf

USAGE

usage: run.py [-h] [--dataset DATASET] [--root ROOT] [--num-query NUM_QUERY]
              [--arch ARCH] [--num-train NUM_TRAIN]
              [--code-length CODE_LENGTH] [--topk TOPK] [--gpu GPU] [--lr LR]
              [--batch-size BATCH_SIZE] [--max-iter MAX_ITER]
              [--num-workers NUM_WORKERS]
              [--evaluate-interval EVALUATE_INTERVAL] [--eta ETA]

DPSH_PyTorch

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     Dataset name.
  --root ROOT           Path of dataset
  --num-query NUM_QUERY
                        Number of query data points.(default: 1000)
  --arch ARCH           CNN model name.(default: alexnet)
  --num-train NUM_TRAIN
                        Number of training data points.(default: 5000)
  --code-length CODE_LENGTH
                        Binary hash code length.(default: 12,24,32,48)
  --topk TOPK           Calculate map of top k.(default: all)
  --gpu GPU             Using gpu.(default: False)
  --lr LR               learning rate(default: 1e-5)
  --batch-size BATCH_SIZE
                        batch size(default: 128)
  --max-iter MAX_ITER   Number of iterations.(default: 150)
  --num-workers NUM_WORKERS
                        Number of loading data threads.(default: 6)
  --evaluate-interval EVALUATE_INTERVAL
                        Evaluation interval(default: 10)
  --eta ETA             Hyper-parameter.(default: 0.1)

EXPERIMENTS

CNN model: Alexnet. Compute mean average precision(MAP).

cifar10: 1000 query images, 5000 training images.

nus-wide-tc21: 21 classes, 2100 query images, 10500 training images.

imagenet100: 100 classes, 5000 query images, 10000 training images.

bits 12 16 24 32 48 64 128
cifar10@ALL 0.6676 0.7131 0.7118 0.7362 0.7487 0.7542 0.7565
nus-wide-tc21@5000 0.8091 0.8188 0.8346 0.8403 0.8450 0.8503 0.8588
imagenet100@1000 0.1985 0.2497 0.3654 0.4147 0.4612 0.4950 0.5687

About

Source code for paper "Feature Learning based Deep Supervised Hashing with Pairwise Labels" on IJCAI-2016

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages