Skip to content

Commit

Permalink
Merge pull request #2218 from Ethos-lab/randomized-smoothing-additions
Browse files Browse the repository at this point in the history
Randomized Smoothing Variations Implementation
  • Loading branch information
beat-buesser authored Aug 14, 2023
2 parents 82f8fa2 + 63612d2 commit cb4deda
Show file tree
Hide file tree
Showing 18 changed files with 2,002 additions and 253 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -4,5 +4,10 @@
from art.estimators.certification.randomized_smoothing.randomized_smoothing import RandomizedSmoothingMixin

from art.estimators.certification.randomized_smoothing.numpy import NumpyRandomizedSmoothing
from art.estimators.certification.randomized_smoothing.tensorflow import TensorFlowV2RandomizedSmoothing
from art.estimators.certification.randomized_smoothing.pytorch import PyTorchRandomizedSmoothing
from art.estimators.certification.randomized_smoothing.tensorflow import TensorFlowV2RandomizedSmoothing
from art.estimators.certification.randomized_smoothing.smooth_mix.pytorch import PyTorchSmoothMix
from art.estimators.certification.randomized_smoothing.macer.pytorch import PyTorchMACER
from art.estimators.certification.randomized_smoothing.macer.tensorflow import TensorFlowV2MACER
from art.estimators.certification.randomized_smoothing.smooth_adv.pytorch import PyTorchSmoothAdv
from art.estimators.certification.randomized_smoothing.smooth_adv.tensorflow import TensorFlowV2SmoothAdv
Empty file.
238 changes: 238 additions & 0 deletions art/estimators/certification/randomized_smoothing/macer/pytorch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
# MIT License
#
# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2023
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
This module implements MACER applied to classifier predictions.
| Paper link: https://arxiv.org/abs/2001.02378
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import logging
from typing import List, Optional, Tuple, Union, TYPE_CHECKING

from tqdm.auto import trange
import numpy as np

from art.estimators.certification.randomized_smoothing.pytorch import PyTorchRandomizedSmoothing
from art.utils import check_and_transform_label_format

if TYPE_CHECKING:
# pylint: disable=C0412
import torch
from art.utils import CLIP_VALUES_TYPE, PREPROCESSING_TYPE
from art.defences.preprocessor import Preprocessor
from art.defences.postprocessor import Postprocessor

logger = logging.getLogger(__name__)


class PyTorchMACER(PyTorchRandomizedSmoothing):
"""
Implementation of MACER training, as introduced in Zhai et al. (2020)
| Paper link: https://arxiv.org/abs/2001.02378
"""

estimator_params = PyTorchRandomizedSmoothing.estimator_params + [
"beta",
"gamma",
"lmbda",
"gauss_num",
]

def __init__(
self,
model: "torch.nn.Module",
loss: "torch.nn.modules.loss._Loss",
input_shape: Tuple[int, ...],
nb_classes: int,
optimizer: Optional["torch.optim.Optimizer"] = None,
channels_first: bool = True,
clip_values: Optional["CLIP_VALUES_TYPE"] = None,
preprocessing_defences: Union["Preprocessor", List["Preprocessor"], None] = None,
postprocessing_defences: Union["Postprocessor", List["Postprocessor"], None] = None,
preprocessing: "PREPROCESSING_TYPE" = (0.0, 1.0),
device_type: str = "gpu",
sample_size: int = 32,
scale: float = 0.1,
alpha: float = 0.001,
beta: float = 16.0,
gamma: float = 8.0,
lmbda: float = 12.0,
gaussian_samples: int = 16,
verbose: bool = False,
) -> None:
"""
Create a MACER classifier.
:param model: PyTorch model. The output of the model can be logits, probabilities or anything else. Logits
output should be preferred where possible to ensure attack efficiency.
:param loss: The loss function for which to compute gradients for training. The target label must be raw
categorical, i.e. not converted to one-hot encoding.
:param input_shape: The shape of one input instance.
:param nb_classes: The number of classes of the model.
:param optimizer: The optimizer used to train the classifier.
:param channels_first: Set channels first or last.
:param clip_values: Tuple of the form `(min, max)` of floats or `np.ndarray` representing the minimum and
maximum values allowed for features. If floats are provided, these will be used as the range of all
features. If arrays are provided, each value will be considered the bound for a feature, thus
the shape of clip values needs to match the total number of features.
:param preprocessing_defences: Preprocessing defence(s) to be applied by the classifier.
:param postprocessing_defences: Postprocessing defence(s) to be applied by the classifier.
:param preprocessing: Tuple of the form `(subtrahend, divisor)` of floats or `np.ndarray` of values to be
used for data preprocessing. The first value will be subtracted from the input. The input will then
be divided by the second one.
:param device_type: Type of device on which the classifier is run, either `gpu` or `cpu`.
:param sample_size: Number of samples for smoothing.
:param scale: Standard deviation of Gaussian noise added.
:param alpha: The failure probability of smoothing.
:param beta: The inverse temperature.
:param gamma: The hinge factor.
:param lmbda: The trade-off factor.
:param gaussian_samples: The number of gaussian samples per input.
:param verbose: Show progress bars.
"""
super().__init__(
model=model,
loss=loss,
input_shape=input_shape,
nb_classes=nb_classes,
optimizer=optimizer,
channels_first=channels_first,
clip_values=clip_values,
preprocessing_defences=preprocessing_defences,
postprocessing_defences=postprocessing_defences,
preprocessing=preprocessing,
device_type=device_type,
sample_size=sample_size,
scale=scale,
alpha=alpha,
verbose=verbose,
)
self.beta = beta
self.gamma = gamma
self.lmbda = lmbda
self.gaussian_samples = gaussian_samples

def fit( # pylint: disable=W0221
self,
x: np.ndarray,
y: np.ndarray,
batch_size: int = 128,
nb_epochs: int = 10,
training_mode: bool = True,
drop_last: bool = False,
scheduler: Optional["torch.optim.lr_scheduler._LRScheduler"] = None,
**kwargs,
) -> None:
"""
Fit the classifier on the training set `(x, y)`.
:param x: Training data.
:param y: Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or index labels of
shape (nb_samples,).
:param batch_size: Size of batches.
:param nb_epochs: Number of epochs to use for training.
:param training_mode: `True` for model set to training mode and `'False` for model set to evaluation mode.
:param drop_last: Set to ``True`` to drop the last incomplete batch, if the dataset size is not divisible by
the batch size. If ``False`` and the size of dataset is not divisible by the batch size, then
the last batch will be smaller. (default: ``False``)
:param scheduler: Learning rate scheduler to run at the start of every epoch.
:param kwargs: Dictionary of framework-specific arguments. This parameter is not currently supported for PyTorch
and providing it takes no effect.
"""
import torch
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader

# Set model mode
self._model.train(mode=training_mode)

if self._optimizer is None: # pragma: no cover
raise ValueError("An optimizer is needed to train the model, but none for provided")

y = check_and_transform_label_format(y, nb_classes=self.nb_classes)

# Apply preprocessing
x_preprocessed, y_preprocessed = self._apply_preprocessing(x, y, fit=True)

# Check label shape
y_preprocessed = self.reduce_labels(y_preprocessed)

# Create dataloader
x_tensor = torch.from_numpy(x_preprocessed)
y_tensor = torch.from_numpy(y_preprocessed)
dataset = TensorDataset(x_tensor, y_tensor)
dataloader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, drop_last=drop_last)

m = torch.distributions.normal.Normal(
torch.tensor([0.0], device=self.device), torch.tensor([1.0], device=self.device)
)

# Start training
for _ in trange(nb_epochs, disable=not self.verbose):
for x_batch, y_batch in dataloader:
# Move inputs to GPU
x_batch = x_batch.to(self.device)
y_batch = y_batch.to(self.device)

input_size = len(x_batch)

# Tile samples for Gaussian augmentation
new_shape = [input_size * self.gaussian_samples]
new_shape.extend(x_batch[0].shape)
x_batch = x_batch.repeat((1, self.gaussian_samples, 1, 1)).view(new_shape)

# Add random noise for randomized smoothing
noise = torch.randn_like(x_batch, device=self.device) * self.scale
noisy_inputs = x_batch + noise

# Get model outputs
outputs = self.model(noisy_inputs)
outputs = outputs.reshape((input_size, self.gaussian_samples, self.nb_classes))

# Classification loss
outputs_softmax = F.softmax(outputs, dim=2).mean(dim=1)
outputs_log_softmax = torch.log(outputs_softmax + 1e-10)
classification_loss = F.nll_loss(outputs_log_softmax, y_batch, reduction="sum")

# Robustness loss
beta_outputs = outputs * self.beta
beta_outputs_softmax = F.softmax(beta_outputs, dim=2).mean(dim=1)
top2_score, top2_idx = torch.topk(beta_outputs_softmax, 2)
indices_correct = top2_idx[:, 0] == y_batch
out0, out1 = top2_score[indices_correct, 0], top2_score[indices_correct, 1]
robustness_loss = m.icdf(out1) - m.icdf(out0)
indices = (
~torch.isnan(robustness_loss)
& ~torch.isinf(robustness_loss)
& (torch.abs(robustness_loss) <= self.gamma)
)
out0, out1 = out0[indices], out1[indices]
robustness_loss = m.icdf(out1) - m.icdf(out0) + self.gamma
robustness_loss = torch.sum(robustness_loss) * self.scale / 2

# Final objective function
loss = classification_loss + self.lmbda * robustness_loss
loss /= input_size
self._optimizer.zero_grad()
loss.backward()
self._optimizer.step()

if scheduler is not None:
scheduler.step()
Loading

0 comments on commit cb4deda

Please sign in to comment.