Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[enh] Add Support for multiple adapters on Transformers-based models #3046

Merged
merged 5 commits into from
Nov 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion sentence_transformers/SentenceTransformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
from .evaluation import SentenceEvaluator
from .fit_mixin import FitMixin
from .models import Normalize, Pooling, Transformer
from .peft_mixin import PeftAdapterMixin
from .quantization import quantize_embeddings
from .util import (
batch_to_device,
Expand All @@ -52,7 +53,7 @@
logger = logging.getLogger(__name__)


class SentenceTransformer(nn.Sequential, FitMixin):
class SentenceTransformer(nn.Sequential, FitMixin, PeftAdapterMixin):
"""
Loads or creates a SentenceTransformer model that can be used to map sentences / text to embeddings.

Expand Down
143 changes: 143 additions & 0 deletions sentence_transformers/peft_mixin.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
from __future__ import annotations

from functools import wraps

from transformers.integrations.peft import PeftAdapterMixin as PeftAdapterMixinTransformers

from .models import Transformer


def peft_wrapper(func):
"""Wrapper to call the method on the auto_model with a check for PEFT compatibility."""

@wraps(func)
def wrapper(self, *args, **kwargs):
self.check_peft_compatible_model()
method = getattr(self[0].auto_model, func.__name__)
return method(*args, **kwargs)

return wrapper


class PeftAdapterMixin:
"""
Wrapper Mixin that adds the functionality to easily load and use adapters on the model. For
more details about adapters check out the documentation of PEFT
library: https://huggingface.co/docs/peft/index

Currently supported PEFT methods follow those supported by transformers library,
you can find more information on:
https://huggingface.co/docs/transformers/main/en/peft#transformers.integrations.PeftAdapterMixin
"""

def has_peft_compatible_model(self) -> bool:
return isinstance(self[0], Transformer) and isinstance(self[0].auto_model, PeftAdapterMixinTransformers)

def check_peft_compatible_model(self) -> None:
if not self.has_peft_compatible_model():
raise ValueError(
"PEFT methods are only supported for Sentence Transformer models that use the Transformer module."
)

@peft_wrapper
def load_adapter(self, *args, **kwargs) -> None:
"""
Load adapter weights from file or remote Hub folder." If you are not familiar with adapters and PEFT methods, we
invite you to read more about them on PEFT official documentation: https://huggingface.co/docs/peft

Requires peft as a backend to load the adapter weights and the underlying model to be compatible with PEFT.

Args:
*args:
Positional arguments to pass to the underlying AutoModel `load_adapter` function. More information can be found in the transformers documentation
https://huggingface.co/docs/transformers/main/en/peft#transformers.integrations.PeftAdapterMixin.load_adapter
**kwargs:
Keyword arguments to pass to the underlying AutoModel `load_adapter` function. More information can be found in the transformers documentation
https://huggingface.co/docs/transformers/main/en/peft#transformers.integrations.PeftAdapterMixin.load_adapter
"""
... # Implementation handled by the wrapper

@peft_wrapper
def add_adapter(self, *args, **kwargs) -> None:
"""
Adds a fresh new adapter to the current model for training purposes. If no adapter name is passed, a default
name is assigned to the adapter to follow the convention of PEFT library (in PEFT we use "default" as the
default adapter name).

Requires peft as a backend to load the adapter weights and the underlying model to be compatible with PEFT.

Args:
*args:
Positional arguments to pass to the underlying AutoModel `add_adapter` function. More information can be found in the transformers documentation
https://huggingface.co/docs/transformers/main/en/peft#transformers.integrations.PeftAdapterMixin.add_adapter
**kwargs:
Keyword arguments to pass to the underlying AutoModel `add_adapter` function. More information can be found in the transformers documentation
https://huggingface.co/docs/transformers/main/en/peft#transformers.integrations.PeftAdapterMixin.add_adapter

"""
... # Implementation handled by the wrapper

@peft_wrapper
def set_adapter(self, *args, **kwargs) -> None:
"""
Sets a specific adapter by forcing the model to use a that adapter and disable the other adapters.

Args:
*args:
Positional arguments to pass to the underlying AutoModel `set_adapter` function. More information can be found in the transformers documentation
https://huggingface.co/docs/transformers/main/en/peft#transformers.integrations.PeftAdapterMixin.set_adapter
**kwargs:
Keyword arguments to pass to the underlying AutoModel `set_adapter` function. More information can be found in the transformers documentation
https://huggingface.co/docs/transformers/main/en/peft#transformers.integrations.PeftAdapterMixin.set_adapter
"""
... # Implementation handled by the wrapper

@peft_wrapper
def disable_adapters(self) -> None:
"""
Disable all adapters that are attached to the model. This leads to inferring with the base model only.
"""
... # Implementation handled by the wrapper

@peft_wrapper
def enable_adapters(self) -> None:
"""
Enable adapters that are attached to the model. The model will use `self.active_adapter()`
"""
... # Implementation handled by the wrapper

@peft_wrapper
def active_adapters(self) -> list[str]:
"""
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft

Gets the current active adapters of the model. In case of multi-adapter inference (combining multiple adapters
for inference) returns the list of all active adapters so that users can deal with them accordingly.

For previous PEFT versions (that does not support multi-adapter inference), `module.active_adapter` will return
a single string.
"""
... # Implementation handled by the wrapper

@peft_wrapper
def active_adapter(self) -> str: ... # Implementation handled by the wrapper

@peft_wrapper
def get_adapter_state_dict(self, *args, **kwargs) -> dict:
"""
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft

Gets the adapter state dict that should only contain the weights tensors of the specified adapter_name adapter.
If no adapter_name is passed, the active adapter is used.

Args:
*args:
Positional arguments to pass to the underlying AutoModel `get_adapter_state_dict` function. More information can be found in the transformers documentation
https://huggingface.co/docs/transformers/main/en/peft#transformers.integrations.PeftAdapterMixin.get_adapter_state_dict
**kwargs:
Keyword arguments to pass to the underlying AutoModel `get_adapter_state_dict` function. More information can be found in the transformers documentation
https://huggingface.co/docs/transformers/main/en/peft#transformers.integrations.PeftAdapterMixin.get_adapter_state_dict
"""
... # Implementation handled by the wrapper
72 changes: 69 additions & 3 deletions tests/test_sentence_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,8 @@
import pytest
import torch
from huggingface_hub import CommitInfo, HfApi, RepoUrl
from peft import PeftModel
from torch import nn
from transformers.utils import is_peft_available

from sentence_transformers import SentenceTransformer, util
from sentence_transformers.models import (
Expand Down Expand Up @@ -417,8 +417,9 @@ def transformers_init(*args, **kwargs):
assert transformer_kwargs["model_args"]["attn_implementation"] == "eager"


@pytest.mark.skipif(not is_peft_available(), reason="PEFT must be available to test PEFT support.")
def test_load_checkpoint_with_peft_and_lora() -> None:
from peft import LoraConfig, TaskType
from peft import LoraConfig, PeftModel, TaskType

peft_config = LoraConfig(
target_modules=["query", "key", "value"],
Expand All @@ -431,7 +432,7 @@ def test_load_checkpoint_with_peft_and_lora() -> None:

with SafeTemporaryDirectory() as tmp_folder:
model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors")
model._modules["0"].auto_model.add_adapter(peft_config)
model.add_adapter(peft_config)
model.save(tmp_folder)
expecteds = model.encode(["Hello there!", "How are you?"], convert_to_tensor=True)

Expand Down Expand Up @@ -715,3 +716,68 @@ def test_empty_encode(stsb_bert_tiny_model: SentenceTransformer) -> None:
model = stsb_bert_tiny_model
embeddings = model.encode([])
assert embeddings.shape == (0,)


@pytest.mark.skipif(not is_peft_available(), reason="PEFT must be available to test adapter methods.")
def test_multiple_adapters() -> None:
text = "Hello, World!"
model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors")
vec_initial = model.encode(text)
from peft import LoraConfig, TaskType, get_model_status

# Adding a fresh adapter
peft_config = LoraConfig(
target_modules=["query", "key", "value"],
task_type=TaskType.FEATURE_EXTRACTION,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
init_lora_weights=False, # Random initialization to test the adapter
)
model.add_adapter(peft_config)

# Load an adapter from the hub
model.load_adapter("sentence-transformers-testing/stsb-bert-tiny-lora", "hub_adapter")

# Adding another one with a different name
peft_config = LoraConfig(
target_modules=["value"],
task_type=TaskType.FEATURE_EXTRACTION,
inference_mode=False,
r=2,
lora_alpha=16,
lora_dropout=0.1,
init_lora_weights=False, # Random initialization to test the adapter
)
model.add_adapter(peft_config, "my_adapter")

# Check that peft recognizes the adapters while we compute vectors for later comparison
status = get_model_status(model)
assert status.available_adapters == ["default", "hub_adapter", "my_adapter"]
assert status.enabled
assert status.active_adapters == ["my_adapter"]
assert status.active_adapters == model.active_adapters()
vec_my_adapter = model.encode(text)

model.set_adapter("default")
status = get_model_status(model)
assert status.active_adapters == ["default"]
vec_default_adapter = model.encode(text)

model.disable_adapters()
status = get_model_status(model)
assert not status.enabled
vec_no_adapter = model.encode(text)

# Check that each vector is different
assert not np.allclose(vec_my_adapter, vec_default_adapter)
assert not np.allclose(vec_my_adapter, vec_no_adapter)
assert not np.allclose(vec_default_adapter, vec_no_adapter)
# Check that the vectors from the original model match
assert np.allclose(vec_initial, vec_no_adapter)

# Check that for non Transformer-based models we have an error
model = SentenceTransformer("sentence-transformers/average_word_embeddings_levy_dependency")
with pytest.raises(ValueError, match="PEFT methods are only supported"):
model.add_adapter(peft_config)