-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_mask_TS.py
408 lines (369 loc) · 19.3 KB
/
extract_mask_TS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#!/usr/bin/env python
"""
@author: bodo bookhagen, bodo.bookhagen@uni-potsdam.de
"""
import warnings, argparse, os, tqdm, datetime, gzip
import numpy as np
from numba import njit, prange
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib import colors
from matplotlib.colors import LogNorm
import matplotlib.dates as mdates
from mintpy.utils import arg_utils, readfile, utils as ut, plot as pp
from mintpy.defaults.plot import *
import pandas as pd
# from pandas.plotting import register_matplotlib_converters
# register_matplotlib_converters()
EXAMPLE = """example:
extract_mask_TS.py \
--az_ts_file timeseriesAz_var.h5 \
--az_rs_file residualInvAz_var.h5 \
--rg_ts_file timeseriesRg_var.h5 \
--rg_rs_file residualInvRg_var.h5 \
--mask_file aoi4_var_velocity_mask.h5 \
--prcp_threshold 90 \
--HDF_outfile aoi4_var_velocity_mask_ts.h5 \
--npy_outfile aoi4_var_velocity_mask_ts.npy \
--out_pngfname aoi4_var_velocity_mask_ts.png
"""
DESCRIPTION = """
Extract time series for masked region from dx (range) and dy (azimuth). Mask dataset need to be same size as TS.
Save clipped dataset to npy file and create plot.
Aug-2023, Bodo Bookhagen (bodo.bookhagen@uni-potsdam.de) and Ariane Mueting (mueting@uni-potsdam.de)
"""
def cmdLineParser():
from argparse import RawTextHelpFormatter
parser = argparse.ArgumentParser(description=DESCRIPTION, epilog=EXAMPLE, formatter_class=RawTextHelpFormatter)
parser.add_argument('--rg_ts_file', help='dx (Rg) offset timeseries', required=True)
parser.add_argument('--az_ts_file', help='dy (Az) offset timeseries', required=True)
parser.add_argument('--rg_rs_file', default='', help='dx (Rg) offset timeseries residual', required=False)
parser.add_argument('--az_rs_file', default='', help='dy (Az) offset timeseries residual', required=False)
parser.add_argument('--prcp_threshold', type=np.int8, default='90', help='Percentile threshold (0-100) for residual masking', required=False)
parser.add_argument('--mask_file', help='Mask file with data == 1. Allowed are npy, npy.gz, h5, and tif files.', required=True)
parser.add_argument('--HDF_outfile', help='Output filename containing percentiles of each timestep', required=True)
parser.add_argument('--npy_outfile', help='Output filename for masked array from each timestep', required=True)
parser.add_argument('--out_pngfname', default="", help='Output TS plot in PNG format', required=True)
return parser.parse_args()
@njit(parallel=True)
def dxdy_linear_interpolation(tsamples_monthly, delta_day_ar, rg_data_cum, az_data_cum, nre):
az_data_cum_li = np.empty((tsamples_monthly.shape[0], nre), dtype=np.float32)
az_data_cum_li.fill(np.nan)
rg_data_cum_li = np.empty((tsamples_monthly.shape[0], nre), dtype=np.float32)
rg_data_cum_li.fill(np.nan)
for i in prange(rg_data_cum.shape[1]):
#iterate through each pixel in mask and perform linear interpolation for dx and dy
fit_dx = np.interp(x=tsamples_monthly, xp=np.cumsum(delta_day_ar), fp=rg_data_cum[:,i]) #using numpy - it's faster with numba
fit_dy = np.interp(x=tsamples_monthly, xp=np.cumsum(delta_day_ar), fp=az_data_cum[:,i]) #using numpy - it's faster with numba
az_data_cum_li[:,i] = fit_dy
rg_data_cum_li[:,i] = fit_dx
return az_data_cum_li, rg_data_cum_li
if __name__ == '__main__':
np.seterr(divide='ignore', invalid='ignore')
warnings.simplefilter("ignore")
args = cmdLineParser()
# #testing purposes:
# parser = argparse.ArgumentParser(description='Extract time series from mask (mask needs to be same size as TS).')
# args = parser.parse_args()
# args.az_ts_file = 'timeseriesAz_var.h5'
# args.rg_ts_file = 'timeseriesRg_var.h5'
# args.az_rs_file = 'residualInvAz_var.h5'
# args.rg_rs_file = 'residualInvRg_var.h5'
# args.mask_file = 'aoi4_var_velocity_mask.h5'
# args.HDF_outfile = 'aoi4_var_velocity_mask_ts.h5'
# args.npy_outfile='aoi4_var_velocity_mask_ts.npy'
# args.out_pngfname='aoi4_var_velocity_mask_ts_velocity.png'
# args.prcp_threshold = 90
args.atr = readfile.read_attribute(args.az_ts_file)
args.coord = ut.coordinate(args.atr)
# input file info
ts = ut.timeseries(file=args.az_ts_file)
dates = ts.get_date_list()
ts=None
# Both time series contain cumulative offset. Will need to convert to velocity before analysis
print('Reading Rg timeseries... ',end='',flush=True)
rg_data, rg_atr = readfile.read(args.rg_ts_file, datasetName='timeseries')
rg_data -= rg_data[0] #rg_data[0] should be all 0
rg_data *= float(rg_atr['X_STEP'])
print('done ')
print('Reading Az timeseries... ',end='',flush=True)
az_data, az_atr = readfile.read(args.az_ts_file, datasetName='timeseries')
az_data -= az_data[0]
az_data *= float(az_atr['X_STEP'])
print('done ')
if len(args.rg_rs_file) > 0 and len(args.az_rs_file) > 0:
print('Reading Rg residuals ... ',end='',flush=True)
rg_res_data, rg_res_atr = readfile.read(args.rg_rs_file, datasetName='residual')
rg_res_data *= float(rg_res_atr['X_STEP'])
print('done ')
print('Reading Az residuals ... ',end='',flush=True)
az_res_data, az_res_atr = readfile.read(args.az_rs_file, datasetName='residual')
az_res_data *= float(az_res_atr['X_STEP'])
print('done ')
print('Reading mask... ',end='',flush=True)
if args.mask_file.endswith('.h5'):
mask_data, mask_atr = readfile.read(args.mask_file, datasetName='mask')
elif args.mask_file.endswith('.npy'):
f = args.mask_file
mask_data = np.load(f)
f = None
elif args.mask_file.endswith('.npy.gz'):
f = gzip.GzipFile(args.mask_file, "r")
mask_data = np.load(f)
f = None
elif args.mask_file.endswith('.tif'):
from osgeo import gdal
ds = gdal.Open(args.mask_file)
mask_data = ds.GetRasterBand(1).ReadAsArray().shape
ds = None
if mask_data.shape == rg_data[0].shape == False:
print('Mask band and time series need to have the same dimension.')
print('done ')
print('Masking %02d TS arrays... '%az_data.shape[0])
nre = mask_data[mask_data == 1].shape[0]
az_data_cum = np.empty((az_data.shape[0], nre), dtype=np.float32)
az_data_cum.fill(np.nan)
rg_data_cum = np.empty((rg_data.shape[0], nre), dtype=np.float32)
rg_data_cum.fill(np.nan)
if len(args.rg_rs_file) > 0 and len(args.az_rs_file) > 0:
az_res = np.empty(nre, dtype=np.float32)
az_res.fill(np.nan)
rg_res = np.empty(nre, dtype=np.float32)
rg_res.fill(np.nan)
delta_year_ar = np.empty(az_data.shape[0], dtype=np.float32)
delta_year_ar.fill(np.nan)
delta_day_ar = np.empty(az_data.shape[0], dtype=np.float32)
delta_day_ar.fill(np.nan)
for i in tqdm.tqdm(range(az_data.shape[0])):
if i == 0:
caz_data = np.zeros(nre)
crg_data = np.zeros(nre)
caz_data_cum = np.zeros(nre)
crg_data_cum = np.zeros(nre)
delta_year = 0
delta_day = 0
if len(args.rg_rs_file) > 0 and len(args.az_rs_file) > 0:
rg_res = rg_res_data[mask_data == 1]
az_res = az_res_data[mask_data == 1]
elif i > 0:
delta_days = datetime.datetime.strptime(dates[i], "%Y%m%d") - datetime.datetime.strptime(dates[i-1], "%Y%m%d")
delta_year = delta_days.days/365
delta_day = delta_days.days
# Load cumulative offset and mask
caz_data_cum = az_data[i,:,:]
caz_data_cum = caz_data_cum[mask_data == 1]
crg_data_cum = rg_data[i,:,:]
crg_data_cum = crg_data_cum[mask_data == 1]
# could convert offsets to velocity - but we do linear interpolation for smoothing
# caz_data = (az_data[i,:,:] - az_data[i-1,:,:]) / delta_year
# caz_data = caz_data[mask_data == 1]
# crg_data = (rg_data[i,:,:] - rg_data[i-1,:,:]) / delta_year
# crg_data = crg_data[mask_data == 1]
delta_year_ar[i] = delta_year
delta_day_ar[i] = delta_day
rg_data_cum[i,:] = crg_data_cum
az_data_cum[i,:] = caz_data_cum
#use residual filter and remove all points that are above residual percentage
#maybe better to work with sum of residuals - here we are filtering separtely:
# first for range and then for azimuth
if len(args.rg_rs_file) > 0 and len(args.az_rs_file) > 0:
#residual files are given - use these to apply additional filters for mask region
residual_threshold = args.prcp_threshold
rg_res_p = np.percentile(rg_res, residual_threshold)
rg_res_p_idx = np.where(rg_res < rg_res_p)[0]
rg_data_cum = rg_data_cum[:,rg_res_p_idx]
az_data_cum = az_data_cum[:,rg_res_p_idx]
az_res = az_res[rg_res_p_idx]
#now azimuth
az_res_p = np.percentile(az_res, residual_threshold)
az_res_p_idx = np.where(az_res < az_res_p)[0]
rg_data_cum = rg_data_cum[:,az_res_p_idx]
az_data_cum = az_data_cum[:,az_res_p_idx]
az_res = az_res[az_res_p_idx]
#recalculate nre, because values have been removed
nre = rg_data_cum.shape[1]
# plt.plot(np.cumsum(delta_day_ar), np.mean(rg_data_cum, axis=1), 'k.'))
# perform linear interpolation of dx and dy offsets using delta_years
tsamples_monthly = np.arange(0, np.cumsum(delta_day_ar).max()+1, 30) # for interpolation
#linear interpolation for each pixel from mask:
az_data_cum_li, rg_data_cum_li = dxdy_linear_interpolation(tsamples_monthly, delta_day_ar, rg_data_cum, az_data_cum, nre)
# For Debugging: plot mean time series
# fig, ax = plt.subplots(1,2, figsize = (12, 8), dpi=300)
# ax[0].plot(np.cumsum(delta_day_ar), np.mean(rg_data_cum, axis=1), 'b+', label='raw data')
# ax[0].plot(tsamples_monthly, np.mean(rg_data_cum_li, axis=1), 'k', lw=2, label='monthly linear interpolation')
# ax[0].grid()
# ax[0].legend()
# ax[0].set_ylabel("Cumulative displacement dx [pix]")
# ax[0].set_xlabel("Time [days]")
# ax[1].plot(np.cumsum(delta_day_ar), np.mean(az_data_cum, axis=1), 'b+', label='raw data')
# ax[1].plot(tsamples_monthly, np.mean(az_data_cum_li, axis=1), 'k', lw=2, label='monthly linear interpolation')
# ax[1].set_ylabel("Cumulative displacement dy [pix]")
# ax[1].set_xlabel("Time [days]")
# ax[1].grid()
# ax[1].legend()
# fig.suptitle('AOI4: Cumulative TS and linear monthly interpolation from inversion with weights', fontsize=16)
# fig.tight_layout()
print('calculate velocity from linearily interpolated offset values')
# use interpolated values to calculate velocity and direction
v_mag = np.empty((tsamples_monthly.shape[0], nre), dtype=np.float32)
v_mag.fill(np.nan)
v_dir = np.empty((tsamples_monthly.shape[0], nre), dtype=np.float32)
v_dir.fill(np.nan)
for i in tqdm.tqdm(range(tsamples_monthly.shape[0])):
if i == 0:
cv_mag = np.zeros(nre)
cv_dir = np.zeros(nre)
elif i > 0:
delta_day = tsamples_monthly[i] - tsamples_monthly[i-1]
delta_year = delta_days.days/365
caz_data_cum_li = (az_data_cum_li[i,:] - az_data_cum_li[i-1,:]) / delta_year
crg_data_cum_li = (rg_data_cum_li[i,:] - rg_data_cum_li[i-1,:]) / delta_year
v_mag[i,:] = np.sqrt(caz_data_cum_li**2 + crg_data_cum_li**2)
v_dir[i,:] = np.rad2deg(np.arctan2(caz_data_cum_li, crg_data_cum_li))
#save matrices to numpy arrays
v_mag_fname = args.npy_outfile[:-4] + '_vmag.npy.gz'
f = gzip.GzipFile(v_mag_fname, "w")
np.save(file=f, arr=v_mag)
f.close()
f = None
v_dir_fname = args.npy_outfile[:-4] + '_vdir.npy.gz'
f = gzip.GzipFile(v_dir_fname, "w")
np.save(file=f, arr=v_dir)
f.close()
f = None
az_fname = args.npy_outfile[:-4] + '_az_li.npy.gz'
f = gzip.GzipFile(az_fname, "w")
np.save(file=f, arr=az_data_cum_li)
f.close()
f = None
rg_fname = args.npy_outfile[:-4] + '_rg_li.npy.gz'
f = gzip.GzipFile(rg_fname, "w")
np.save(file=f, arr=rg_data_cum_li)
f.close()
f = None
# Can be loaded with:
# f = gzip.GzipFile(date0_stack_fname, "r")
# date0_stack = np.load(f)
# f = None
#convert number of days (from interpolation) to datetime
base = pd.to_datetime(dates[0], format='%Y%m%d')
date_list = []
date_list.append(base)
for i in range(1,tsamples_monthly.shape[0]):
date_list.append(base + datetime.timedelta(days=tsamples_monthly[i]))
# store only time steps that contain actual measurements
# np.cumsum(delta_day_ar)
# store mean and statistics into pandas HDF file
#not storing original value, but only interpolated values
# vdata = np.c_[np.nanmean(tsamples_monthly, az_data_cum, axis=1), np.nanstd(az_data_cum, axis=1),
# np.nanmean(rg_data_cum, axis=1), np.nanstd(rg_data_cum, axis=1),
# np.nanmean(rg_data_cum_li, axis=1), np.nanstd(rg_data_cum_li, axis=1),
# np.nanmean(rg_data_cum, axis=1), np.nanstd(rg_data_cum, axis=1),
# np.nanmean(vel_magnitude, axis=1), np.nanstd(vel_magnitude, axis=1),
# np.nanpercentile(vel_magnitude, axis=1, q=25), np.nanpercentile(vel_magnitude, axis=1, q=75),
# np.nanmean(vel_direction, axis=1), np.nanstd(vel_direction, axis=1)]
vdata = np.c_[tsamples_monthly, np.nanmean(az_data_cum_li, axis=1), np.nanstd(az_data_cum_li, axis=1),
np.nanmean(rg_data_cum_li, axis=1), np.nanstd(rg_data_cum_li, axis=1),
np.nanmean(v_mag, axis=1), np.nanstd(v_mag, axis=1),
np.nanpercentile(v_mag, axis=1, q=25), np.nanpercentile(v_mag, axis=1, q=75),
np.nanmean(v_dir, axis=1), np.nanstd(v_dir, axis=1)]
vel_mag_dir_df = pd.DataFrame(vdata, columns=['nr_of_days', 'dy_mean', 'dy_std', 'dx_mean', 'dx_std', 'v_mean', 'v_std', 'v_25p', 'v_75p', 'dir_mean', 'dir_std'],
index=date_list)
vel_mag_dir_df.to_hdf(args.HDF_outfile, key='vel_mag_dir_df', complevel=7)
fig, ax = plt.subplots(1, 3, figsize = (16, 8), dpi=300)
ax[0].errorbar(vel_mag_dir_df.index, vel_mag_dir_df.dx_mean, yerr=vel_mag_dir_df.dx_std, color='navy', lw=0.5)
ax[0].plot(vel_mag_dir_df.index, vel_mag_dir_df.dx_mean, 'k', lw=2, label='linear interpolation')
ax[0].plot(pd.to_datetime(dates, format='%Y%m%d'), np.nanmean(rg_data_cum, axis=1), 'x', color='darkred', label='raw rg data')
ax[0].grid()
ax[0].legend()
ax[0].set_ylabel("Cumulative displacement dx [pix]")
ax[0].set_xlabel("Time")
ax[1].errorbar(vel_mag_dir_df.index, vel_mag_dir_df.dy_mean, yerr=vel_mag_dir_df.dy_std, color='navy', lw=0.5)
ax[1].plot(vel_mag_dir_df.index, vel_mag_dir_df.dy_mean, 'k', lw=2, label='linear interpolation')
ax[1].plot(pd.to_datetime(dates, format='%Y%m%d'), np.nanmean(az_data_cum, axis=1), 'x', color='darkred', label='raw az data')
ax[1].set_ylabel("Cumulative displacement dy [pix]")
ax[1].grid()
ax[1].legend()
ax[1].set_xlabel("Time")
ax[2].errorbar(vel_mag_dir_df.index, vel_mag_dir_df.v_mean, yerr=vel_mag_dir_df.v_std, color='navy', lw=0.5)
ax[2].plot(vel_mag_dir_df.index, vel_mag_dir_df.v_mean, 'k', lw=2)
ax[2].set_ylabel("Velocity [m/y]")
ax[2].grid()
ax[2].set_xlabel("Time")
fig.suptitle('Cumulative TS with linear interpolation from inversion', fontsize=16)
fig.tight_layout()
fig.savefig(args.out_pngfname[:-4]+'_mean.png')
# prepare pcolormesh with histogram plot for velocity
mintimedelta = 30 # [days]
nbins = 100
v = v_mag[1:,:]
b = np.linspace(v.min(), v.max(), nbins+1)
#d = [datetime.datetime.strptime(s, '%Y%m%d') for s in dates]
d = date_list
d = d[1:]
ndays = (d[-1]-d[0]).days+1
x = [d[0] + datetime.timedelta(days = i*mintimedelta) for i in range(ndays//mintimedelta+2)]
img = np.nan * np.ones((nbins, ndays//mintimedelta+1))
for j, di in enumerate(d):
i = (di-d[0]).days//mintimedelta
img[:, i], _ = np.histogram(v[j,:], b, density = True)
dtime_idx = np.empty(len(dates[1::]), dtype=np.int16)
for i in range(len(dates[1::])):
dtime_idx[i] = np.argmin(np.abs(pd.to_datetime(x)-pd.to_datetime(dates[i+1])))
fig, ax = plt.subplots(1, 3, figsize = (19.2, 10.8), dpi=300)
im0 = ax[0].pcolormesh(x, b, img, norm = LogNorm(), cmap = plt.cm.magma_r)
ax[0].plot(vel_mag_dir_df.index, vel_mag_dir_df.v_mean, 'w', lw=2)
ax[0].plot(vel_mag_dir_df.index[dtime_idx], vel_mag_dir_df.v_mean[dtime_idx], 'wx', ms=5, lw=1)
ax[0].xaxis.set_major_locator(matplotlib.dates.MonthLocator(interval=12))
ax[0].xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%Y'))
ax[0].xaxis.set_minor_locator(matplotlib.dates.MonthLocator(interval=1))
# ax[0].xaxis.set_minor_formatter(matplotlib.dates.DateFormatter('%m'))
cb0 = plt.colorbar(im0, ax=ax[0], location='bottom', pad=0.1)
cb0.set_label('Probability')
ax[0].set_title('Lin. Interp. Velocity from inversion')
ax[0].set_xlabel('Time')
ax[0].set_ylabel('Velocity [m/y]')
ax[0].grid()
# prepare pcolormesh with histogram plot for dx cumulative
v2 = rg_data_cum_li[1:,:]
b = np.linspace(v2.min(), v2.max(), nbins+1)
img2 = np.nan * np.ones((nbins, ndays//mintimedelta+1))
for j, di in enumerate(d):
i = (di-d[0]).days//mintimedelta
img2[:, i], _ = np.histogram(v2[j,:], b, density = True)
im1 = ax[1].pcolormesh(x, b, img2, norm = LogNorm(), cmap = plt.cm.viridis)
ax[1].plot(vel_mag_dir_df.index, vel_mag_dir_df.dx_mean, 'k', lw=2)
ax[1].plot(vel_mag_dir_df.index[dtime_idx], vel_mag_dir_df.dx_mean[dtime_idx], 'wx', ms=5, lw=1)
ax[1].xaxis.set_major_locator(matplotlib.dates.MonthLocator(interval=12))
ax[1].xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%Y'))
ax[1].xaxis.set_minor_locator(matplotlib.dates.MonthLocator(interval=1))
# ax[1].xaxis.set_minor_formatter(matplotlib.dates.DateFormatter('%m'))
cb1 = plt.colorbar(im1, ax=ax[1], location='bottom', pad=0.1)
cb1.set_label('Probability')
ax[1].set_title('Lin. Interp. cumulative dx from inversion')
ax[1].set_xlabel('Time')
ax[1].set_ylabel('dx [m]')
ax[1].grid()
# prepare pcolormesh with histogram plot for dy cumulative
v3 = az_data_cum_li[1:,:]
b = np.linspace(v3.min(), v3.max(), nbins+1)
img3 = np.nan * np.ones((nbins, ndays//mintimedelta+1))
for j, di in enumerate(d):
i = (di-d[0]).days//mintimedelta
img3[:, i], _ = np.histogram(v3[j,:], b, density = True)
im2 = ax[2].pcolormesh(x, b, img3, norm = LogNorm(), cmap = plt.cm.viridis)
ax[2].plot(vel_mag_dir_df.index, vel_mag_dir_df.dy_mean, 'k', lw=2)
ax[2].plot(vel_mag_dir_df.index[dtime_idx], vel_mag_dir_df.dy_mean[dtime_idx], 'wx', ms=5, lw=1)
ax[2].xaxis.set_major_locator(matplotlib.dates.MonthLocator(interval=12))
ax[2].xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%Y'))
ax[2].xaxis.set_minor_locator(matplotlib.dates.MonthLocator(interval=1))
# ax[2].xaxis.set_minor_formatter(matplotlib.dates.DateFormatter('%m'))
cb2 = plt.colorbar(im2, ax=ax[2], location='bottom', pad=0.1)
cb2.set_label('Probability')
ax[2].set_title('Lin. Interp. cumulative dy from inversion')
ax[2].set_xlabel('Time')
ax[2].set_ylabel('dy [m]')
ax[2].grid()
fig.tight_layout()
fig.savefig(args.out_pngfname, dpi=300)