Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rewrite datatype list as table in docs #1390

Merged
merged 1 commit into from
Nov 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
84 changes: 70 additions & 14 deletions docs/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -297,27 +297,83 @@ <h2 id="variables-in-a-netcdf-file">Variables in a netCDF file</h2>
unlike numpy arrays, netCDF4 variables can be appended to along one or
more 'unlimited' dimensions. To create a netCDF variable, use the
<code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance. The <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code>j method
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance. The <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> method
has two mandatory arguments, the variable name (a Python string), and
the variable datatype. The variable's dimensions are given by a tuple
containing the dimension names (defined previously with
<code><a title="netCDF4.Dataset.createDimension" href="#netCDF4.Dataset.createDimension">Dataset.createDimension()</a></code>). To create a scalar
variable, simply leave out the dimensions keyword. The variable
primitive datatypes correspond to the dtype attribute of a numpy array.
You can specify the datatype as a numpy dtype object, or anything that
can be converted to a numpy dtype object.
Valid datatype specifiers
include: <code>'f4'</code> (32-bit floating point), <code>'f8'</code> (64-bit floating
point), <code>'i4'</code> (32-bit signed integer), <code>'i2'</code> (16-bit signed
integer), <code>'i8'</code> (64-bit signed integer), <code>'i1'</code> (8-bit signed
integer), <code>'u1'</code> (8-bit unsigned integer), <code>'u2'</code> (16-bit unsigned
integer), <code>'u4'</code> (32-bit unsigned integer), <code>'u8'</code> (64-bit unsigned
integer), or <code>'S1'</code> (single-character string).
The old Numeric
single-character typecodes (<code>'f'</code>,<code>'d'</code>,<code>'h'</code>,
<code>'s'</code>,<code>'b'</code>,<code>'B'</code>,<code>'c'</code>,<code>'i'</code>,<code>'l'</code>), corresponding to
(<code>'f4'</code>,<code>'f8'</code>,<code>'i2'</code>,<code>'i2'</code>,<code>'i1'</code>,<code>'i1'</code>,<code>'S1'</code>,<code>'i4'</code>,<code>'i4'</code>),
will also work. The unsigned integer types and the 64-bit integer type
can be converted to a numpy dtype object. Valid datatype specifiers
include:</p>
<table>
<thead>
<tr>
<th>Specifier</th>
<th>Datatype</th>
<th>Old typecodes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'f4'</code></td>
<td>32-bit floating point</td>
<td><code>'f'</code></td>
</tr>
<tr>
<td><code>'f8'</code></td>
<td>64-bit floating point</td>
<td><code>'d'</code></td>
</tr>
<tr>
<td><code>'i4'</code></td>
<td>32-bit signed integer</td>
<td><code>'i'</code> <code>'l'</code></td>
</tr>
<tr>
<td><code>'i2'</code></td>
<td>16-bit signed integer</td>
<td><code>'h'</code> <code>'s'</code></td>
</tr>
<tr>
<td><code>'i8'</code></td>
<td>64-bit signed integer</td>
<td></td>
</tr>
<tr>
<td><code>'i1'</code></td>
<td>8-bit signed integer</td>
<td><code>'b'</code> <code>'B'</code></td>
</tr>
<tr>
<td><code>'u1'</code></td>
<td>8-bit unsigned integer</td>
<td></td>
</tr>
<tr>
<td><code>'u2'</code></td>
<td>16-bit unsigned integer</td>
<td></td>
</tr>
<tr>
<td><code>'u4'</code></td>
<td>32-bit unsigned integer</td>
<td></td>
</tr>
<tr>
<td><code>'u8'</code></td>
<td>64-bit unsigned integer</td>
<td></td>
</tr>
<tr>
<td><code>'S1'</code></td>
<td>single-character string</td>
<td><code>'c'</code></td>
</tr>
</tbody>
</table>
<p>The unsigned integer types and the 64-bit integer type
can only be used if the file format is <code>NETCDF4</code>.</p>
<p>The dimensions themselves are usually also defined as variables, called
coordinate variables. The <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code>
Expand Down
31 changes: 19 additions & 12 deletions src/netCDF4/_netCDF4.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -295,25 +295,32 @@ supplied by the [numpy module](http://numpy.scipy.org). However,
unlike numpy arrays, netCDF4 variables can be appended to along one or
more 'unlimited' dimensions. To create a netCDF variable, use the
`Dataset.createVariable` method of a `Dataset` or
`Group` instance. The `Dataset.createVariable`j method
`Group` instance. The `Dataset.createVariable` method
has two mandatory arguments, the variable name (a Python string), and
the variable datatype. The variable's dimensions are given by a tuple
containing the dimension names (defined previously with
`Dataset.createDimension`). To create a scalar
variable, simply leave out the dimensions keyword. The variable
primitive datatypes correspond to the dtype attribute of a numpy array.
You can specify the datatype as a numpy dtype object, or anything that
can be converted to a numpy dtype object. Valid datatype specifiers
include: `'f4'` (32-bit floating point), `'f8'` (64-bit floating
point), `'i4'` (32-bit signed integer), `'i2'` (16-bit signed
integer), `'i8'` (64-bit signed integer), `'i1'` (8-bit signed
integer), `'u1'` (8-bit unsigned integer), `'u2'` (16-bit unsigned
integer), `'u4'` (32-bit unsigned integer), `'u8'` (64-bit unsigned
integer), or `'S1'` (single-character string). The old Numeric
single-character typecodes (`'f'`,`'d'`,`'h'`,
`'s'`,`'b'`,`'B'`,`'c'`,`'i'`,`'l'`), corresponding to
(`'f4'`,`'f8'`,`'i2'`,`'i2'`,`'i1'`,`'i1'`,`'S1'`,`'i4'`,`'i4'`),
will also work. The unsigned integer types and the 64-bit integer type
can be converted to a numpy dtype object. Valid datatype specifiers
include:

| Specifier | Datatype | Old typecodes |
|-----------|-------------------------|---------------|
| `'f4'` | 32-bit floating point | `'f'` |
| `'f8'` | 64-bit floating point | `'d'` |
| `'i4'` | 32-bit signed integer | `'i'` `'l'` |
| `'i2'` | 16-bit signed integer | `'h'` `'s'` |
| `'i8'` | 64-bit signed integer | |
| `'i1'` | 8-bit signed integer | `'b'` `'B'` |
| `'u1'` | 8-bit unsigned integer | |
| `'u2'` | 16-bit unsigned integer | |
| `'u4'` | 32-bit unsigned integer | |
| `'u8'` | 64-bit unsigned integer | |
| `'S1'` | single-character string | `'c'` |

The unsigned integer types and the 64-bit integer type
can only be used if the file format is `NETCDF4`.

The dimensions themselves are usually also defined as variables, called
Expand Down