Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[docs] buffer_size parameter clarification #4252

Merged
merged 2 commits into from
Jul 21, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/Training-Configuration-File.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ choice of the trainer (which we review on subsequent sections).
| `threaded` | (default = `true`) By default, model updates can happen while the environment is being stepped. This violates the [on-policy](https://spinningup.openai.com/en/latest/user/algorithms.html#the-on-policy-algorithms) assumption of PPO slightly in exchange for a training speedup. To maintain the strict on-policyness of PPO, you can disable parallel updates by setting `threaded` to `false`. There is usually no reason to turn `threaded` off for SAC. |
| `hyperparameters -> learning_rate` | (default = `3e-4`) Initial learning rate for gradient descent. Corresponds to the strength of each gradient descent update step. This should typically be decreased if training is unstable, and the reward does not consistently increase. <br><br>Typical range: `1e-5` - `1e-3` |
| `hyperparameters -> batch_size` | Number of experiences in each iteration of gradient descent. **This should always be multiple times smaller than `buffer_size`**. If you are using a continuous action space, this value should be large (in the order of 1000s). If you are using a discrete action space, this value should be smaller (in order of 10s). <br><br> Typical range: (Continuous - PPO): `512` - `5120`; (Continuous - SAC): `128` - `1024`; (Discrete, PPO & SAC): `32` - `512`. |
| `hyperparameters -> buffer_size` | (default = `10240` for PPO and `50000` for SAC) Number of experiences to collect before updating the policy model. Corresponds to how many experiences should be collected before we do any learning or updating of the model. **This should be multiple times larger than `batch_size`**. Typically a larger `buffer_size` corresponds to more stable training updates. In SAC, the max size of the experience buffer - on the order of thousands of times longer than your episodes, so that SAC can learn from old as well as new experiences. <br><br>Typical range: PPO: `2048` - `409600`; SAC: `50000` - `1000000` |
| `hyperparameters -> buffer_size` | (default = `10240` for PPO and `50000` for SAC)<br> **PPO:** Number of experiences to collect before updating the policy model. Corresponds to how many experiences should be collected before we do any learning or updating of the model. **This should be multiple times larger than `batch_size`**. Typically a larger `buffer_size` corresponds to more stable training updates. <br> **SAC:** The max size of the experience buffer - on the order of thousands of times longer than your episodes, so that SAC can learn from old as well as new experiences. <br><br>Typical range: PPO: `2048` - `409600`; SAC: `50000` - `1000000` |
| `hyperparameters -> learning_rate_schedule` | (default = `linear` for PPO and `constant` for SAC) Determines how learning rate changes over time. For PPO, we recommend decaying learning rate until max_steps so learning converges more stably. However, for some cases (e.g. training for an unknown amount of time) this feature can be disabled. For SAC, we recommend holding learning rate constant so that the agent can continue to learn until its Q function converges naturally. <br><br>`linear` decays the learning_rate linearly, reaching 0 at max_steps, while `constant` keeps the learning rate constant for the entire training run. |
| `network_settings -> hidden_units` | (default = `128`) Number of units in the hidden layers of the neural network. Correspond to how many units are in each fully connected layer of the neural network. For simple problems where the correct action is a straightforward combination of the observation inputs, this should be small. For problems where the action is a very complex interaction between the observation variables, this should be larger. <br><br> Typical range: `32` - `512` |
| `network_settings -> num_layers` | (default = `2`) The number of hidden layers in the neural network. Corresponds to how many hidden layers are present after the observation input, or after the CNN encoding of the visual observation. For simple problems, fewer layers are likely to train faster and more efficiently. More layers may be necessary for more complex control problems. <br><br> Typical range: `1` - `3` |
Expand Down