🌿 IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking
Shuai Jia, Yibing Song, Chao Ma and Xiaokang Yang
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
We observe that the increase of noise level positively correlates to the decrease of IoU scores, but their directions are not exactly the same.
- Our IoU attack seeks to inject the lowest amount of noisy perturbations at the same contour line of IoU score for each iteration.
- We choose three representative trackers with different structures, SiamRPN++, DiMP and LTMU, respectively.
VOT2019 A / R / EAO |
VOT2018 A / R / EAO |
VOT2016 A / R / EAO |
VOT2018lt F-score |
OTB2015 OP / DP |
NFS30 OP / DP |
|
---|---|---|---|---|---|---|
SiamRPN++ | 0.596 / 0.472 / 0.287 | 0.602 / 0.239 / 0.413 | 0.643 / 0.200 / 0.461 | 0.625 | 0.695 / 0.905 | 0.509 / 0.601 |
SiamRPN++(Random) | 0.591 / 0.727 / 0.220 | 0.587 / 0.365 / 0.301 | 0.632 / 0.340 / 0.331 | 0.553 | 0.631 / 0.818 | 0.466 / 0.550 |
SiamRPN++(Attack) | 0.575 / 1.575 / 0.124 | 0.568 / 1.171 / 0.129 | 0.605 / 0.802 / 0.183 | 0.453 | 0.499 / 0.644 | 0.394 / 0.446 |
VOT2019 A / R / EAO |
VOT2018 A / R / EAO |
VOT2016 A / R / EAO |
VOT2018lt F-score |
OTB2015 OP / DP |
NFS30 OP / DP |
|
---|---|---|---|---|---|---|
DiMP | 0.568 / 0.277 / 0.332 | 0.574 / 0.145 / 0.427 | 0.599 / 0.140 / 0.449 | 0.609 | 0.671 / 0.869 | 0.614 / 0.729 |
DiMP(Random) | 0.567 / 0.373 / 0.284 | 0.560 / 0.202 / 0.363 | 0.592 / 0.168 / 0.404 | 0.555 | 0.659 / 0.860 | 0.591 / 0.710 |
DiMP(Attack) | 0.474 / 0.641 / 0.195 | 0.507 / 0.400 / 0.248 | 0.536 / 0.374 / 0.256 | 0.443 | 0.592 / 0.791 | 0.545 / 0.658 |
VOT2019 A / R / EAO |
VOT2018 A / R / EAO |
VOT2016 A / R / EAO |
VOT2018ltT F-score |
OTB2015 OP / DP |
NFS30 OP / DP |
|
---|---|---|---|---|---|---|
LTMU | 0.625 / 0.913 / 0.201 | 0.624 / 0.702 / 0.195 | 0.661 / 0.522 / 0.236 | 0.691 | 0.672 / 0.872 | 0.631 / 0.764 |
LTMU(Random) | 0.623 / 1.073 / 0.175 | 0.622 / 0.805 / 0.178 | 0.646 / 0.592 / 0.233 | 0.657 | 0.622 / 0.815 | 0.579 / 0.699 |
LTMU(Attack) | 0.576 / 1.470 / 0.150 | 0.590 / 1.320 / 0.120 | 0.604 / 0.904 / 0.170 | 0.589 | 0.517 / 0.712 | 0.462 / 0.559 |
🌿 All raw results are available. [Google_drive]
🌿 The code of IoU attack for SiamRPN++ is released!!
- You should put the datasets into
pysot/testing_dataset
folder. - Please download the pretrained model and set the environments of SiamPRN++.
- See SiamRPN++ for more details.
Test the original performance on VOT2018 dataset, please use the following command.
cd pysot/experiments/siamrpn_r50_l234_dwxcorr
python -u ../../tools/test_original.py \
--snapshot model.pth \ # model path
--dataset VOT2018 \ # dataset name
--config config.yaml # config file
Test IoU attack on VOT2018 dataset, please use the following command.
cd pysot/experiments/siamrpn_r50_l234_dwxcorr
python -u ../../tools/test_IoU_attack.py \
--snapshot model.pth \ # model path
--dataset VOT2018 \ # dataset name
--config config.yaml # config file
For the adversarial attack of other datasets, you should change the dataset name as mentioned above.
If any part of our paper and code is helpful to your work, please generously citing:
@inproceedings{jia-cvpr21-iouattack,
title={IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking},
author={Jia, Shuai and Song, Yibing and Ma, Chao and Yang, Xiaokang},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2021}
}
Thank you :)
We choose three representative trackers, SiamRPN++, DiMP and LTMU. The original code of these trackers are list as follows:
- SiamRPN++: https://github.com/STVIR/pysot
- DiMP: https://github.com/visionml/pytracking
- LTMU: https://github.com/Daikenan/LTMU
We also refer to the code of Boundary Attack for IoU attack.
- Boundary Attack: https://github.com/greentfrapp/boundary-attack
Thanks for their wonderful works!
Licensed under an MIT license.