-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
180 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
import torch | ||
import torch.nn as nn | ||
|
||
import dover | ||
from dover.models import VQAHead | ||
from dover.models import VQABackbone as VideoBackbone, convnext_3d_tiny | ||
|
||
class MinimumDOVER(nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
self.technical_backbone = VideoBackbone(use_checkpoint=False) | ||
self.aesthetic_backbone = convnext_3d_tiny(pretrained=False) | ||
self.technical_head = VQAHead(pre_pool=False, in_channels=768) | ||
self.aesthetic_head = VQAHead(pre_pool=False, in_channels=768) | ||
|
||
|
||
def forward(self,aesthetic_view, technical_view): | ||
self.eval() | ||
with torch.no_grad(): | ||
aesthetic_score = self.aesthetic_head(self.aesthetic_backbone(aesthetic_view)) | ||
technical_score = self.technical_head(self.technical_backbone(technical_view)) | ||
|
||
aesthetic_score_pooled = torch.mean(aesthetic_score, (1,2,3,4)) | ||
technical_score_pooled = torch.mean(technical_score, (1,2,3,4)) | ||
return [aesthetic_score_pooled, technical_score_pooled] | ||
|
||
import torch | ||
minimum_dover = MinimumDOVER() | ||
sd = torch.load("pretrained_weights/DOVER.pth", map_location="cpu") | ||
minimum_dover.load_state_dict(sd) | ||
|
||
if torch.cuda.is_available(): | ||
minimum_dover = minimum_dover.cuda() | ||
dummy_inputs = (torch.randn(1,3,32,224,224).cuda(), torch.randn(4,3,32,224,224).cuda()) | ||
else: | ||
dummy_inputs = (torch.randn(1,3,32,224,224), torch.randn(4,3,32,224,224)) | ||
|
||
torch.onnx.export(minimum_dover, dummy_inputs, "onnx_dover.onnx", verbose=True, | ||
input_names=["aes_view", "tech_view"]) | ||
|
||
print("Successfull") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
import torch | ||
|
||
import argparse | ||
import pickle as pkl | ||
|
||
import decord | ||
import numpy as np | ||
import yaml | ||
|
||
import onnxruntime as ort | ||
|
||
from dover.datasets import UnifiedFrameSampler, spatial_temporal_view_decomposition | ||
|
||
mean, std = ( | ||
torch.FloatTensor([123.675, 116.28, 103.53]), | ||
torch.FloatTensor([58.395, 57.12, 57.375]), | ||
) | ||
|
||
|
||
# 4-parameter sigmoid rescaling, as adviced by ITU | ||
def fuse_results(results: list): | ||
x = (results[0] - 0.1107) / 0.07355 * 0.6104 + ( | ||
results[1] + 0.08285 | ||
) / 0.03774 * 0.3896 | ||
print(x) | ||
return 1 / (1 + np.exp(-x)) | ||
|
||
|
||
def gaussian_rescale(pr): | ||
# The results should follow N(0,1) | ||
pr = (pr - np.mean(pr)) / np.std(pr) | ||
return pr | ||
|
||
|
||
def uniform_rescale(pr): | ||
# The result scores should follow U(0,1) | ||
return np.arange(len(pr))[np.argsort(pr).argsort()] / len(pr) | ||
|
||
|
||
def rescale_results(results: list, vname="undefined"): | ||
dbs = { | ||
"livevqc": "LIVE_VQC", | ||
"kv1k": "KoNViD-1k", | ||
"ltest": "LSVQ_Test", | ||
"l1080p": "LSVQ_1080P", | ||
"ytugc": "YouTube_UGC", | ||
} | ||
for abbr, full_name in dbs.items(): | ||
with open(f"dover_predictions/val-{abbr}.pkl", "rb") as f: | ||
pr_labels = pkl.load(f) | ||
aqe_score_set = pr_labels["resize"] | ||
tqe_score_set = pr_labels["fragments"] | ||
tqe_score_set_p = np.concatenate((np.array([results[0]]), tqe_score_set), 0) | ||
aqe_score_set_p = np.concatenate((np.array([results[1]]), aqe_score_set), 0) | ||
tqe_nscore = gaussian_rescale(tqe_score_set_p)[0] | ||
tqe_uscore = uniform_rescale(tqe_score_set_p)[0] | ||
print(f"Compared with all videos in the {full_name} dataset:") | ||
print( | ||
f"-- the technical quality of video [{vname}] is better than {int(tqe_uscore*100)}% of videos, with normalized score {tqe_nscore:.2f}." | ||
) | ||
aqe_nscore = gaussian_rescale(aqe_score_set_p)[0] | ||
aqe_uscore = uniform_rescale(aqe_score_set_p)[0] | ||
print( | ||
f"-- the aesthetic quality of video [{vname}] is better than {int(aqe_uscore*100)}% of videos, with normalized score {aqe_nscore:.2f}." | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument( | ||
"-o", "--opt", type=str, default="./dover.yml", help="the option file" | ||
) | ||
|
||
## can be your own | ||
parser.add_argument( | ||
"-v", | ||
"--video_path", | ||
type=str, | ||
default="./demo/1724.mp4", | ||
help="the input video path", | ||
) | ||
|
||
|
||
args = parser.parse_args() | ||
|
||
with open(args.opt, "r") as f: | ||
opt = yaml.safe_load(f) | ||
|
||
|
||
dopt = opt["data"]["val-l1080p"]["args"] | ||
|
||
temporal_samplers = {} | ||
for stype, sopt in dopt["sample_types"].items(): | ||
if "t_frag" not in sopt: | ||
# resized temporal sampling for TQE in DOVER | ||
temporal_samplers[stype] = UnifiedFrameSampler( | ||
sopt["clip_len"], sopt["num_clips"], sopt["frame_interval"] | ||
) | ||
else: | ||
# temporal sampling for AQE in DOVER | ||
temporal_samplers[stype] = UnifiedFrameSampler( | ||
sopt["clip_len"] // sopt["t_frag"], | ||
sopt["t_frag"], | ||
sopt["frame_interval"], | ||
sopt["num_clips"], | ||
) | ||
|
||
### View Decomposition | ||
views, _ = spatial_temporal_view_decomposition( | ||
args.video_path, dopt["sample_types"], temporal_samplers | ||
) | ||
|
||
for k, v in views.items(): | ||
num_clips = dopt["sample_types"][k].get("num_clips", 1) | ||
views[k] = ( | ||
((v.permute(1, 2, 3, 0) - mean) / std) | ||
.permute(3, 0, 1, 2) | ||
.reshape(v.shape[0], num_clips, -1, *v.shape[2:]) | ||
.transpose(0, 1) | ||
) | ||
|
||
|
||
aes_input = views["aesthetic"] | ||
tech_input = views["technical"] | ||
ort_session = ort.InferenceSession("onnx_dover.onnx") | ||
|
||
import time | ||
|
||
s = time.time() | ||
predictions = ort_session.run(None, {"aes_view": aes_input.numpy(), | ||
"tech_view": tech_input.numpy()}) | ||
|
||
scores = [np.mean(s) for s in predictions] | ||
print(f"Inference time cost: {time.time() - s:.3f}s.") | ||
# predict fused overall score, with default score-level fusion parameters | ||
print(f"Normalized fused overall score (scale in [0,1]): {fuse_results(scores):.3f}") | ||
|