Skip to content

VT-NLP/multimodal_retrieval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

multimodal_retrieval

Dataset

Put the kmass dataset in the data folder. The expected folder structure is like data/kmass/documents, data/kmass/queryio/in and data/kmass/queryio/out.

Run

1. Create conda environment and install requirements

conda create -n multimodal_retrieval -y python  && conda activate multimodal_retrieval
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.3 -c pytorch -c conda-forge
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
pip install -r requirements.txt

2. Run

python multimodal_retrieval.py

3. Compute Precision Score

PYTHONPATH=. python data_util/kmass_data_util.py

Credit:

This code is from End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models codebase.

Please use the following citation:

@article{yao2022end,
  title={End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models},
  author={Yao, Barry Menglong and Shah, Aditya and Sun, Lichao and Cho, Jin-Hee and Huang, Lifu},
  journal={arXiv preprint arXiv:2205.12487},
  year={2022}
}

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages