Put the kmass dataset in the data folder. The expected folder structure is like data/kmass/documents, data/kmass/queryio/in and data/kmass/queryio/out.
conda create -n multimodal_retrieval -y python && conda activate multimodal_retrieval
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.3 -c pytorch -c conda-forge
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
pip install -r requirements.txt
python multimodal_retrieval.py
PYTHONPATH=. python data_util/kmass_data_util.py
This code is from End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models codebase.
Please use the following citation:
@article{yao2022end,
title={End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models},
author={Yao, Barry Menglong and Shah, Aditya and Sun, Lichao and Cho, Jin-Hee and Huang, Lifu},
journal={arXiv preprint arXiv:2205.12487},
year={2022}
}
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}