Chatting Transformer is a Python library for generating text using GPT2. GPT-2 is a language model that was developed by OpenAI that specializes in generating text. By using Chatting Transformer, you can implement and use this model with just two lines of code.
pip install chattingtransformer
from chattingtransformer import ChattingGPT2
model_name = "gpt2"
gpt2 = ChattingGPT2(model_name)
text = "In 10 years, AI will "
result = gpt2.generate_text(text)
print(result) # Outputs: In 10 years, AI will have revolutionized the way we interact with the world...
Model | Parameters | Size |
---|---|---|
gpt2 | 134 M | 548 MB |
gpt2-medium | 335 M | 1.52 GB |
gpt2-large | 774 M | 3.25 GB |
gpt2-xl | 1.5 B | 6.43 GB |
from chattingtransformer import ChattingGPT2
gpt2 = ChattingGPT2("gpt2")
gpt2_medium = ChattingGPT2("gpt2-medium")
gpt2_large = ChattingGPT2("gpt2-large")
gpt2_xl = ChattingGPT2("gpt2-xl")
Below are predfined methods that may be used to determine the output. To learn more, about these methods, please visit this webpage.
- "greedy"
- "beam-search"
- "generic-sampling"
- "top-k-sampling"
- "top-p-nucleus-sampling"
from chattingtransformer import ChattingGPT2
gpt2 = ChattingGPT2("gpt2")
text = "I think therefore I "
greedy_output = gpt2.generate_text(text, method = "greedy")
beam_search_output= gpt2.generate_text(text, method = "beam-search")
generic_sampling_output = gpt2.generate_text(text, method = "generic-sampling")
top_k_sampling_output = gpt2.generate_text(text, method = "top-k-sampling")
top_p_nucleus_sampling_output = gpt2.generate_text(text, method = "top-p-nucleus-sampling")
Below are the default values for the parameters you may adjust to modify how the model generates text. For more information about the purpose of each parameter, please visit Hugging Face's Transformer documentation on this webpage.
max_length:
min_length:
do_sample:
early_stopping:
num_beams:
temperature:
top_k:
top_p:
repetition_penalty:
length_penalty:
no_repeat_ngram_size:
bad_words_ids:
You have the ability to modify all of the default text generation parameters at once as shown below.
from chattingtransformer import ChattingGPT2
settings = {
"do_sample": False,
"early_stopping": False,
"num_beams": 1,
"temperature": 1,
"top_k": 50,
"top_p": 1.0,
"repetition_penalty": 1,
"length_penalty": 1,
"no_repeat_ngram_size": 2,
'bad_words_ids': None,
}
gpt2 = ChattingGPT2("gpt2")
text = "I think therefore I "
result = gpt2.generate_text(text, method = "custom", custom_settings = settings)
You may modify the min and max length of the output using parameters within the generate_text method.
from chattingtransformer import ChattingGPT2
gpt2 = ChattingGPT2("gpt2")
text = "I think therefore I "
result = gpt2.generate_text(text, min_length=5, max_length=500)