Skip to content

Mini-project for my CST Part III Representation Learning on Graphs and Networks (L45) module

License

Notifications You must be signed in to change notification settings

VictorZXY/expressive-graph-gen

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Improving Graph Generative Models via Expressive Graph Neural Networks

Mini-project for my CST Part III Representation Learning on Graphs and Networks (L45) module

Report here

Abstract

Graph generation is a very challenging problem that requires predicting an entire graph with multiple nodes and edges from a given label, and is fundamental for many real-world tasks, such as molecular graph generation for drug discovery. A lot of successful methods have been explored on graph generation, including Graph Convolutional Policy Network (GCPN) and GraphAF, but the underlying graph neural network (GNN) structure for graph representation within both works remains untouched, which is Relational Graph Convolutional Network (R-GCN). In this mini-project, I investigate the expressivity of GNNs under the context of the graph generation problem, by replacing R-GCN in GCPN with more expressive GNNs, including Graph Isomorphism Network (GIN), Principal Neighbourhood Aggregation (PNA) and Graph Substructure Network (GSN). Experimental results show that more expressive GNNs can indeed significantly improve GCPN's performance on chemical property optimisation, with the only bottleneck coming from the sensitive nature of the graph generative method.

About

Mini-project for my CST Part III Representation Learning on Graphs and Networks (L45) module

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages