Skip to content

Latest commit

 

History

History
49 lines (39 loc) · 1.41 KB

README.md

File metadata and controls

49 lines (39 loc) · 1.41 KB

ReMS

Code for Relevance-based Modality Specific Weighting for Multimodal Emotion Recognition

1. File system

- models
  -- model.py
- data
  -- dataloader.py
  -- train.pkl
  -- valid.pkl
  -- test.pkl
- src
  -- utils
   -- functions.py
   -- metricsTop.py
  -- config.py
  -- train.py
- results
- main.py
- requirements.txt

2. Environmet

  • PyTorch version: 1.8.0
  • CUDA version: 11.1
  • cudnn version: 8005
  • GPU: Tesla V100-SXM2-16GB

3. How to use

  1. Downlioad pretrained Bert-base and Bert-large model from https://huggingface.co/

  2. Downlioad the data. Google Drive;

  3. Install related libries. pip install requirements.txt

  4. Test. (2 examples)

  • Bert-base: python main.py --name BaseTest --bert_type bert_base --rems_use --two_stage --test_only --seeds 3
  • Bert-large: python main.py --name LargeTest --bert_type bert_large --rems_use --two_stage --test_only --seeds 1
  1. Train. (The predicting is not so stable, the following is an examples)
  • python main.py --name RemsBase --num_workers 16 --bert_type bert_base --lr_other 1e-4 --post_other_dropout 0.0 --lr_text_bert 2e-5 --lr_text_other 1e-3 --post_text_dropout 0.0 --rems_use --two_stage --seeds 0 1 2 3 4