Code for Relevance-based Modality Specific Weighting for Multimodal Emotion Recognition
- models
-- model.py
- data
-- dataloader.py
-- train.pkl
-- valid.pkl
-- test.pkl
- src
-- utils
-- functions.py
-- metricsTop.py
-- config.py
-- train.py
- results
- main.py
- requirements.txt
- PyTorch version: 1.8.0
- CUDA version: 11.1
- cudnn version: 8005
- GPU: Tesla V100-SXM2-16GB
-
Downlioad pretrained Bert-base and Bert-large model from https://huggingface.co/
-
Downlioad the data. Google Drive;
-
Install related libries. pip install requirements.txt
-
Test. (2 examples)
- Bert-base: python main.py --name BaseTest --bert_type bert_base --rems_use --two_stage --test_only --seeds 3
- Bert-large: python main.py --name LargeTest --bert_type bert_large --rems_use --two_stage --test_only --seeds 1
- Train. (The predicting is not so stable, the following is an examples)
- python main.py --name RemsBase --num_workers 16 --bert_type bert_base --lr_other 1e-4 --post_other_dropout 0.0 --lr_text_bert 2e-5 --lr_text_other 1e-3 --post_text_dropout 0.0 --rems_use --two_stage --seeds 0 1 2 3 4