This is the codebase for paper: "Revisiting Unsupervised Domain Adaptation Models: a Smoothness Perspective" (ACCV 2022)
conda env create -f leco.yaml
conda activate leco
Office-31 can be found here.
Office-Home can be found here.
Visda-C can be found here.
DomainNet can be found here.
For MCC:
python da_visda.py --dset visda --lr 0.001 --net resnet101 --gpu_id 0 --batch_size 36 --base MCC --method Blank --interval 2 --s 0 --t 1
For MCC + LECO:
python da_visda.py --dset visda --lr 0.001 --net resnet101 --gpu_id 0 --batch_size 36 --base MCC --method LECO --interval 2 --s 0 --t 1 --warm_up 3000 --lamda 3
We set seed=[2020, 2021, 2022], showing the stable improvements to MCC. Logs can refer to TV.
Methods | plane | bcycl | bus | car | horse | knife | mcycl | person | plant | sktbrd | train | truck | Per-class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MCC(2020) | 94.3 | 80.35 | 75.93 | 64.03 | 92.45 | 97.16 | 85.23 | 83.12 | 89.23 | 86.01 | 82.11 | 53.26 | 81.93 |
MCC(2021) | 93.69 | 84.06 | 76.35 | 65.71 | 91.39 | 94.94 | 86.04 | 77.62 | 92.44 | 89.57 | 81.52 | 54.29 | 82.30 |
MCC(2022) | 93.25 | 81.18 | 73.73 | 57.23 | 90.94 | 71.08 | 83.09 | 77.05 | 82.63 | 86.94 | 81.89 | 55.73 | 77.90 |
MCC+LeCo(2020) | 97.12 | 85.96 | 83.86 | 89.66 | 96.55 | 97.45 | 89.06 | 84.05 | 95.91 | 90.79 | 85.08 | 43.82 | 86.61 |
MCC+LeCo(2021) | 95.72 | 86.33 | 86.46 | 91.55 | 96.18 | 96.82 | 92.53 | 74.18 | 96.07 | 92.85 | 84.07 | 38.09 | 85.90 |
MCC+LeCo(2022) | 96.49 | 87.02 | 79.17 | 90.46 | 95.86 | 96.43 | 91.24 | 82.55 | 94.55 | 92.42 | 88.36 | 40.57 | 86.26 |
For CDAN:
python da_visda.py --dset visda --lr 0.01 --net resnet101 --gpu_id 0 --batch_size 36 --base CDAN --method Blank --interval 2 --s 0 --t 1 --warm_up 3000 --lamda 3 --lr_decay2 0.1
For CDAN + LECO:
python da_visda.py --dset visda --lr 0.01 --net resnet101 --gpu_id 0 --batch_size 36 --base CDAN --method LECO --interval 2 --s 0 --t 1 --warm_up 3000 --lamda 0.5 --lr_decay2 0.1
For BNM:
python da_visda.py --dset visda --lr 0.001 --net resnet101 --gpu_id 0 --batch_size 36 --base BNM --method Blank --interval 2 --s 0 --t 1
FOr BNM + LeCo:
python da_visda.py --dset visda --lr 0.001 --net resnet101 --gpu_id 0 --batch_size 36 --base BNM --method LECO --interval 2 --s 0 --t 1 --warm_up 3000 --lamda 2
For MCC:
python da_home.py --dset office-home --lr 0.01 --net resnet50 --gpu_id 0 --batch_size 36 --base MCC --method Blank --interval 2
For MCC + LECO:
python da_home.py --dset office-home --lr 0.01 --net resnet50 --gpu_id 0 --batch_size 36 --base MCC --method LECO --interval 2 --warm_up 3000 --lamda 2
For CDAN:
python da_visda.py --dset visda --lr 0.01 --net resnet101 --gpu_id 0 --batch_size 36 --base CDAN --method Blank --interval 2 --lr_decay2 0.1
For CDAN + LECO:
python da_visda.py --dset visda --lr 0.01 --net resnet101 --gpu_id 0 --batch_size 36 --base CDAN --method LECO --interval 2 --warm_up 3000 --lamda 2 --lr_decay2 0.1
For BNM
python da_visda.py --dset visda --lr 0.01 --net resnet101 --gpu_id 0 --batch_size 36 --base BNM --method Blank --interval 2
For BNM + LECO
python da_visda.py --dset visda --lr 0.01 --net resnet101 --gpu_id 0 --batch_size 36 --base BNM --method LECO --interval 2 --lambda 3
For MCC + LECO
python da_domainNet.py --dset com-dn --lr 0.01 --net resnet101 --gpu_id 0 --batch_size 36 --base MCC --method LECO --interval 5 --warm_up 3000 --lamda 2
This code file is borrowed from BNM. And you need to specify the source and target domain like follows:
For baseline: MCC, and method: LECO
python da_office.py --gpu_id 0 --base MCC --method LECO --num_iterations 8004 --dset office --s dslr --t amazon --test_interval 2000 --lambda_method 3
Intra-class variance and inter-class variance visualization can refer to files (cal_cluster_intra.py, cal_cluster_inter.py).
Choosing the best hyper-parameter can refer to file: dev_loss.py.
@inproceedings{wang2022revisiting,
title={Revisiting Unsupervised Domain Adaptation Models: a Smoothness Perspective},
author={Wang, Xiaodong and Zhuo, Junbao and Zhang, Mengru and Wang, Shuhui and Fang, Yuejian},
booktitle={Proceedings of the Asian Conference on Computer Vision},
pages={1504--1521},
year={2022}
}