-
-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
172 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
""" | ||
The package including the modules of TiDE. | ||
Refer to the paper | ||
`Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. | ||
"Long-term Forecasting with TiDE: Time-series Dense Encoder". | ||
In Transactions on Machine Learning Research, 2023. | ||
<https://openreview.net/pdf?id=pCbC3aQB5W>`_ | ||
Notes | ||
----- | ||
This implementation is inspired by the official one | ||
https://github.com/google-research/google-research/blob/master/tide and https://github.com/lich99/TiDE | ||
""" | ||
|
||
# Created by Wenjie Du <wenjay.du@gmail.com> | ||
# License: BSD-3-Clause | ||
|
||
|
||
from .autoencoder import TideEncoder, TideDecoder | ||
|
||
__all__ = [ | ||
"TideEncoder", | ||
"TideDecoder", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
""" | ||
""" | ||
|
||
# Created by Wenjie Du <wenjay.du@gmail.com> | ||
# License: BSD-3-Clause | ||
|
||
import torch | ||
import torch.fft | ||
import torch.nn as nn | ||
|
||
from .layers import ResBlock | ||
|
||
|
||
class TideEncoder(nn.Module): | ||
def __init__( | ||
self, | ||
n_steps: int, | ||
n_features: int, | ||
n_layers: int, | ||
d_hidden: int, | ||
d_feature_encode: int, | ||
dropout: float, | ||
): | ||
super().__init__() | ||
self.n_steps = n_steps | ||
self.n_features = n_features | ||
self.n_layers = n_layers | ||
self.d_hidden = d_hidden | ||
self.res_hidden = d_hidden | ||
self.dropout = dropout | ||
self.d_feature_encode = d_feature_encode | ||
|
||
flatten_dim = ( | ||
self.n_steps + (self.n_steps + self.n_pred_steps) * self.d_feature_encode | ||
) | ||
self.feature_encoder = ResBlock( | ||
self.n_features, self.res_hidden, self.d_feature_encode, dropout | ||
) | ||
self.encoder_layers = nn.Sequential( | ||
ResBlock(flatten_dim, self.res_hidden, self.d_hidden, dropout), | ||
*( | ||
[ResBlock(self.d_hidden, self.res_hidden, self.d_hidden, dropout)] | ||
* (self.n_layers - 1) | ||
) | ||
) | ||
|
||
def forward(self, X, dynamic): | ||
feature = self.feature_encoder(dynamic) | ||
hidden = self.encoder_layers( | ||
torch.cat([X, feature.reshape(feature.shape[0], -1)], dim=-1) | ||
) | ||
return hidden | ||
|
||
|
||
class TideDecoder(nn.Module): | ||
def __init__( | ||
self, | ||
n_steps: int, | ||
n_pred_steps: int, | ||
n_pred_features: int, | ||
n_layers: int, | ||
d_hidden: int, | ||
d_feature_encode, | ||
dropout: float, | ||
): | ||
super().__init__() | ||
self.n_steps = n_steps | ||
self.n_pred_steps = n_pred_steps | ||
self.d_hidden = d_hidden | ||
res_hidden = d_hidden | ||
|
||
self.decoder_layers = nn.Sequential( | ||
*([ResBlock(d_hidden, res_hidden, d_hidden, dropout)] * (n_layers - 1)), | ||
ResBlock( | ||
d_hidden, | ||
res_hidden, | ||
n_pred_features * n_pred_steps, | ||
dropout, | ||
) | ||
) | ||
self.final_temporal_decoder = ResBlock( | ||
n_pred_features + d_feature_encode, | ||
d_hidden, | ||
1, | ||
dropout, | ||
) | ||
self.residual_proj = nn.Linear(self.n_steps, self.n_steps) | ||
|
||
def forward( | ||
self, | ||
X, | ||
feature_encoding, | ||
hidden_stats, | ||
): | ||
decoded = self.decoder_layers(hidden_stats).reshape( | ||
hidden_stats.shape[0], self.n_pred_steps, self.n_pred_features | ||
) | ||
dec_out = self.temporalDecoder( | ||
torch.cat([feature_encoding[:, self.n_steps :], decoded], dim=-1) | ||
).squeeze(-1) + self.residual_proj(X) | ||
return dec_out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
""" | ||
""" | ||
|
||
# Created by Wenjie Du <wenjay.du@gmail.com> | ||
# License: BSD-3-Clause | ||
|
||
import torch | ||
import torch.fft | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
class LayerNorm(nn.Module): | ||
"""LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False""" | ||
|
||
def __init__(self, ndim, bias): | ||
super().__init__() | ||
self.weight = nn.Parameter(torch.ones(ndim)) | ||
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None | ||
|
||
def forward(self, x): | ||
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) | ||
|
||
|
||
class ResBlock(nn.Module): | ||
def __init__(self, input_dim, hidden_dim, output_dim, dropout=0.1, bias=True): | ||
super().__init__() | ||
|
||
self.fc1 = nn.Linear(input_dim, hidden_dim, bias=bias) | ||
self.fc2 = nn.Linear(hidden_dim, output_dim, bias=bias) | ||
self.fc3 = nn.Linear(input_dim, output_dim, bias=bias) | ||
self.dropout = nn.Dropout(dropout) | ||
self.relu = nn.ReLU() | ||
self.ln = LayerNorm(output_dim, bias=bias) | ||
|
||
def forward(self, x): | ||
out = self.fc1(x) | ||
out = self.relu(out) | ||
out = self.fc2(out) | ||
out = self.dropout(out) | ||
out = out + self.fc3(x) | ||
out = self.ln(out) | ||
return out |