Skip to content

Source code for the COLING 2022 paper "KGE-CL: Contrastive Learning of Tensor Decomposition Based Knowledge Graph Embeddings".

Notifications You must be signed in to change notification settings

Wentao-Xu/KGE-CL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 

Repository files navigation

KGE-CL Framework for Knowledge Graph Embedding

Source code for the COLING 2022 paper "KGE-CL: Contrastive Learning of Tensor Decomposition Based Knowledge Graph Embeddings".

Dependencies

  • Python 3.6+
  • PyTorch 1.0+
  • NumPy 1.17.2+
  • tqdm 4.41.1+

Reproduce the Results

1. Preprocess the Datasets

To preprocess the datasets, run the following commands.

cd code
python process_datasets.py

Now, the processed datasets are in the data directory

2. run KGE-CL

To reproduce the results of KGE-CL on WN18RR, FB15k237 and YAGO3-10, please run the following commands.

#################################### WN18RR ####################################
# RESCAL
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset WN18RR --model RESCAL --rank 512 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 512 --regularizer DURA_RESCAL --reg 1e-1 --max_epochs 200 \
--valid 5 -train -id 0 -save -weight --a_hr 2

# ComplEx
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset WN18RR --model ComplEx --rank 2000 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 200 --regularizer DURA_W --reg 1e-1 --max_epochs 50 \
--valid 5 -train -id 0 -save -weight  --temperature 0.5 --a_tr 2

#################################### FB237 ####################################
# RESCAL
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset FB237 --model RESCAL --rank 512 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 512 --regularizer DURA_RESCAL --reg 5e-2 --max_epochs 200 \
--valid 5 -train -id 0 -save --a_tr 2

# ComplEx
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset FB237 --model ComplEx --rank 2000 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 200 --regularizer DURA_W --reg 5e-2 --max_epochs 200 \
--valid 5 -train -id 0 -save --temperature 0.5 --a_h 2

#################################### YAGO3-10 ####################################
# RESCAL
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset YAGO3-10 --model RESCAL --rank 512 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 512 --regularizer DURA_RESCAL_W --reg 5e-3 --max_epochs 200 \
--valid 5 -train -id 0 -save -weight --a_tr 1

# ComplEx
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset YAGO3-10 --model ComplEx --rank 1000 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 200 --regularizer DURA_W --reg 5e-3 --max_epochs 200 \
--valid 5 -train -id 0 -save --temperature 0.5 --a_t 1

Citation

Please cite the following paper if you use this code in your work.

@inproceedings{luo-etal-2022-kge,
    title = "{KGE}-{CL}: Contrastive Learning of Tensor Decomposition Based Knowledge Graph Embeddings",
    author = "Luo, Zhiping  and
      Xu, Wentao  and
      Liu, Weiqing  and
      Bian, Jiang  and
      Yin, Jian  and
      Liu, Tie-Yan",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://aclanthology.org/2022.coling-1.229",
    pages = "2598--2607",
}

About

Source code for the COLING 2022 paper "KGE-CL: Contrastive Learning of Tensor Decomposition Based Knowledge Graph Embeddings".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages