A toolkit for Animal Individual Identification that covers use cases such as training, feature extraction, similarity calculation, image retrieval, and classification.
Datasets for identification of individual animals | Trained model for individual re‑identification | Tools for training re‑identification models |
The wildlife-tools
library offers a simple interface for various tasks in the Wildlife Re-Identification domain. It covers use cases such as training, feature extraction, similarity calculation, image retrieval, and classification. It complements the wildlife-datasets
library, which acts as dataset repository.
More information can be found in Documentation
Here’s a summary of recent updates and changes.
- Expanded Functionality: Local feature matching is done using gluefactory
- Feature extraction methods: SuperPoint, ALIKED, DISK, SIFT features
- Matching method: LightGlue, More efficient LoFTR
- New Feature: Introduced WildFusion (https://arxiv.org/abs/2408.12934), calibrated score fusion for high-accuracy animal reidentification. Added calibration methods.
- Bug Fixes: Resolved issues with knn and ranking inference methods and many more.
To install wildlife-tools
, you can build it from scratch or use pre-build Pypi package.
pip install wildlife-tools
Clone the repository using git
and install it.
git clone git@github.com:WildlifeDatasets/wildlife-tools.git
cd wildlife-tools
pip install -e .
- The
data
module provides tools for creating instances of theImageDataset
. - The
train
module offers tools for fine-tuning feature extractors on theImageDataset
. - The
features
module provides tools for extracting features from theImageDataset
using various extractors. - The
similarity
module provides tools for constructing a similarity matrix from query and database features. - The
inference
module offers tools for creating predictions using the similarity matrix.
graph TD;
A[Data]-->|ImageDataset|B[Features]
A-->|ImageDataset|C;
C[Train]-->|finetuned extractor|B;
B-->|query and database features|D[Similarity]
D-->|similarity matrix|E[Inference]
Using metadata from wildlife-datasets
, create ImageDataset
object for the MacaqueFaces dataset.
from wildlife_datasets.datasets import MacaqueFaces
from wildlife_tools.data import ImageDataset
import torchvision.transforms as T
metadata = MacaqueFaces('datasets/MacaqueFaces')
transform = T.Compose([T.Resize([224, 224]), T.ToTensor(), T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))])
dataset = ImageDataset(metadata.df, metadata.root, transform=transform)
Optionally, split metadata into subsets. In this example, query is first 100 images and rest are in database.
dataset_database = ImageDataset(metadata.df.iloc[100:,:], metadata.root, transform=transform)
dataset_query = ImageDataset(metadata.df.iloc[:100,:], metadata.root, transform=transform)
Extract features using MegaDescriptor Tiny, downloaded from HuggingFace hub.
import timm
from wildlife_tools.features import DeepFeatures
name = 'hf-hub:BVRA/MegaDescriptor-T-224'
extractor = DeepFeatures(timm.create_model(name, num_classes=0, pretrained=True))
query, database = extractor(dataset_query), extractor(dataset_database)
Calculate cosine similarity between query and database deep features.
from wildlife_tools.similarity import CosineSimilarity
similarity_function = CosineSimilarity()
similarity = similarity_function(query, database)
Use the cosine similarity in nearest neigbour classifier and get predictions.
import numpy as np
from wildlife_tools.inference import KnnClassifier
classifier = KnnClassifier(k=1, database_labels=dataset_database.labels_string)
predictions = classifier(similarity['cosine'])
accuracy = np.mean(dataset_database.labels_string == predictions)
If you like our package, please cite us.
@InProceedings{Cermak_2024_WACV,
author = {\v{C}erm\'ak, Vojt\v{e}ch and Picek, Luk\'a\v{s} and Adam, Luk\'a\v{s} and Papafitsoros, Kostas},
title = {{WildlifeDatasets: An Open-Source Toolkit for Animal Re-Identification}},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2024},
pages = {5953-5963}
}
@article{cermak2024wildfusion,
title={WildFusion: Individual animal identification with calibrated similarity fusion},
author={Cermak, Vojt{\v{e}}ch and Picek, Lukas and Adam, Luk{\'a}{\v{s}} and Neumann, Luk{\'a}{\v{s}} and Matas, Ji{\v{r}}{\'\i}},
journal={arXiv preprint arXiv:2408.12934},
year={2024}
}