Skip to content

This datasets are used to benchmark patch augmentation performance of patchmentation.

Notifications You must be signed in to change notification settings

Xu-Justin/patchmentation-dataset

Repository files navigation

Patchmentation Dataset

This datasets are used to benchmark patch augmentation performance of patchmentation.

The benchmarking results can be found at Xu-Justin/patchmentation-yolov5.

Dependency

  • Using PIP

    pip install -r requirements.txt
  • Using Docker (recommended)

    docker pull jstnxu/patchmentation:dataset
    docker run -it \
      -v {cache_folder}:/root/.cache/patchmentation-data \
      -v {data_folder}:/workspace/data \
      jstnxu/patchmentation:dataset /bin/bash
    • change {cache_folder} to local path to save cache.

    • change {data_folder} to local path to save generated data.

Dataset Spesification

  • Training Dataset

    train-pascal-voc-2007
    • Number of Images: 2501

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    python3 dataset.py --version train-pascal-voc-2007 --generate
    train-pascal-voc-2007-tiny
    • Number of Images: 200

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    python3 dataset.py --version train-pascal-voc-2007-tiny --generate --batch 2
    train-pascal-voc-2007-v1
    • Number of Images: 2,500

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    • Actions

      • filter.FilterWidth(50, Comparator.GreaterEqual)

      • filter.FilterHeight(50, Comparator.GreaterEqual)

      • transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)

    • Kwargs

      • max_n_patches = 10

    python3 dataset.py --version train-pascal-voc-2007-v1 --generate --batch 30
    train-pascal-voc-2007-v2
    • Number of images: 2,500

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    • Actions

      • filter.FilterWidth(50, Comparator.GreaterEqual)

      • filter.FilterHeight(50, Comparator.GreaterEqual)

      • transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)

      • filter.FilterWidth(30, Comparator.GreaterEqual)

      • filter.FilterHeight(30, Comparator.GreaterEqual)

      • transform.SoftEdge(13, 20)

    • Kwargs

      • max_n_patches = 20

      • visibility_threshold = 1.0


    python3 dataset.py --version train-pascal-voc-2007-v2 --generate --batch 30
    train-pascal-voc-2007-v3
    • Number of images: 2,500

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    • Actions

      • filter.FilterWidth(50, Comparator.GreaterEqual)

      • filter.FilterHeight(50, Comparator.GreaterEqual)

      • transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)

    • Kwargs

      • max_n_patches = 20

      • visibility_threshold = 0.8

      • ratio_negative_patch = 5.0

      • iou_negative_patch = 0.2


    python3 dataset.py --version train-pascal-voc-2007-v3 --generate --batch 30
    train-pascal-voc-2007-v4
    • Number of images: 2,500

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    • Actions

      • filter.FilterWidth(50, Comparator.GreaterEqual)

      • filter.FilterHeight(50, Comparator.GreaterEqual)

      • transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)

      • filter.FilterWidth(30, Comparator.GreaterEqual)

      • filter.FilterHeight(30, Comparator.GreaterEqual)

      • transform.SoftEdge(13, 20)

    • Kwargs

      • max_n_patches = 20

      • visibility_threshold = 0.8

      • ratio_negative_patch = 5.0

      • iou_negative_patch = 0.2


    python3 dataset.py --version train-pascal-voc-2007-v4 --generate --batch 30
    train-penn-fudan-ped-person
    • Number of images: 100

    • Number of Classes: 1

    • Source: Penn Fudan Ped

    python3 dataset.py --version train-penn-fudan-ped-person --generate --batch 100
    train-campus
    • Number of images: 250

    • Number of Classes: 1

    • Source: Campus - Garden1, Penn Fudan Ped

    • Actions

      • filter.FilterWidth(20, Comparator.GreaterEqual)

      • filter.FilterHeight(20, Comparator.GreaterEqual)

      • transform.RandomResize(height_range=(150, 600), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)

      • transform.SoftEdge(5, 10)

    • Kwargs

      • max_n_patches = 30

      • visibility_threshold = 0.8


    python3 dataset.py --version train-campus --generate --batch 50
  • Validation Dataset

    valid-pascal-voc-2007
    • Number of Images: 2,510

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Val

    python3 dataset.py --version valid-pascal-voc-2007 --generate
    valid-penn-fudan-ped-person
    • Number of images: 70

    • Number of Classes: 1

    • Source: Penn Fudan Ped

    python3 dataset.py --version valid-penn-fudan-ped-person --generate
    valid-campus
    • Number of images: 256

    • Number of Classes: 1

    • Source: Campus - Garden1

    python3 dataset.py --version valid-campus --generate
  • Test Dataset

    test-pascal-voc-2007
    • Number of Images: 4,952

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Test

    python3 dataset.py --version test-pascal-voc-2007 --generate
    test-campus
    • Number of images: 11,538

    • Number of Classes: 1

    • Source: Campus - Garden1

    python3 dataset.py --version test-campus --generate

Arguments

Priority* Arguments Type Description
- --version one or more str Dataset version(s).
- --overwrite store_true Overwrite existing dataset / zip.
- --batch int Number of batch to generate (default=1)
1 --generate store_true Generate the dataset. If overwrite is true, it will remove the dataset (if exists) before generating.
2 --zip store_true Zip the dataset. If overwrite is true, it will remove the dataset zip (if exists) before zipping.
3 --upload store_true Upload the dataset zip.
4 --remove-zip store_true Remove the dataset zip, if exists.
5 --download one or more url Download the dataset zip. If overwrite is true, it will remove the dataset zip (if exists) before downloading.
6 --unzip store_true Unzip the dataset zip. If overwrite is true, it will remove the dataset (if exists) before unzipping.
7 --validate store_true Validate the dataset.
8 --remove store_true Remove the dataset, if exists.

*Smaller priority number will be executed first


This project was developed as part of thesis project, Computer Science, BINUS University.

About

This datasets are used to benchmark patch augmentation performance of patchmentation.

Topics

Resources

Stars

Watchers

Forks