This is the official code of
Deep Neural Networks Learn Meta-Structures from Noisy Labels in Semantic Segmentation (AAAI-2022 Oral).
Elucidating Meta-Structures of Noisy Labels in Semantic Segmentation by Deep Neural Networks (under review)
You need to download the ER and MITO datasets.
Your directory tree should be look like this:
$SEG_ROOT/datasets
├── er
│ ├── test
│ │ ├── images
│ │ ├── labels
│ ├── train
│ │ ├── images
│ │ ├── labels
│ ├── val
│ │ ├── images
│ │ ├── labels
├── mito
│ ├── test
│ │ ├── images
│ │ ├── labels
│ ├── train
│ │ ├── images
│ │ ├── labels
│ ├── val
│ │ ├── images
│ │ ├── labels
├── txt
│ ├── er
│ │ ├── train
│ │ │ ├── train_gt.txt
│ │ │ ├── train_noisyLabel.txt
│ │ └── val.txt
│ ├── mito
│ │ ├── train
│ │ │ ├── train_gt.txt
│ │ │ ├── train_noisyLabel.txt
│ │ └── val.txt
To train model, you should save the datapath into a __.txt file and put it into the txt dictionary, then run main.py for training.
To test the segmentation performance, you should first run evaluation/inference.py to save the outputs of testing sets in train_log (Use parameters train_dir
and test_ckpt_epoch
to change the path of pre-trained models).
Then, you can run evaluation/inference.py to get different metrics scores such as IOU, F1 and others on testing set. (Use parameter test_data_dir
to change the testing datapath __.txt. Use parameter prd_dir
to change the saved predictions path of testing sets).
[1] Deep Neural Networks Learn Meta-Structures from Noisy Labels in Semantic Segmentation. Yaoru Luo, Guole Liu, Yuanhao Guo, Ge Yang Accepted by AAAI-22. download
Code for this projects developped at CBMI Group (Computational Biology and Machine Intelligence Group).
CBMI at National Laboratory of Pattern Recognition, INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES.