PyTorch implementation of "Reconstruction by inpainting for visual anomaly detection (RIAD)"
Disjoint masks with
First and second row shows the mask of
Each column shows the
- Normal (Good): 1
- Abnormal (Not-good): 0, 2, 3, 4, 5, 6, 7, 8, 9 (other than 1)
Anomaly detection performance (w/ validation set)
Result of training: result.json (w/ test set)
root
name_best:"model_2_best_auroc.pth"
auroc:0.9974551381667722
loss:0.0017763811201996548
select_norm:1
masking_mode:"disjoint_mask"
disjoint_n:3
nn:2000
dim_h:28
dim_w:28
dim_c:1
ksize:3
mode_optim:"adam"
learning_rate:0.001
mode_lr:0
path_ckpt:"Checkpoint"
ngpu:1
device:"cuda"
filters:"[1, 64, 128, 256, 512]"
- PyTorch 1.11.0
[1] Vitjan Zavrtanik et al. "Reconstruction by inpainting for visual anomaly detection." Pattern Recognition, vol. 112, 2021.
[2] Taiki Inoue. MSGMS (python module).